Date palm compost versus peat and perlite: a comparative study on germination and plant development of muskmelon and tomato

PDF

Authors: Afraa Radhouani, Leila Benyehia, Belgacem Lechaiheb, Afef Mahjoubi and Ali Ferchichi

Volume/Issue: Volume 24: Issue 2

Published online: 02 Dec 2021

Pages: 96 - 104

DOI: https://doi.org/10.2478/ahr-2021-0030


Abstract

This research was carried out in the experimental site of the Arid and Oasian cultures Laboratory of the Institute of Arid Regions, Medenine, Tunisia. It aims at studying the effects of compost on seed germination patterns, seedling growth, and plant development of muskmelon and tomato under greenhouse conditions. Three growth media were used: compost of date palm wastes and two reference media (peat and perlite). The results showed that compost presented a promising threshold of both maturity and stability, which is related to its neutral pH, C : N ratio, greater humic acid vs fulvic acid, and low values of chlorophyll-type compounds. Seeds of muskmelon and tomato germinated at varying liquid compost extract concentrations and muskmelon reached higher germination index values even at the pure extract solution (100%). Moreover, seeds of both species germinated relatively faster in peat than in compost and an overall delay in germination was observed, with a more pronounced reduction on tomato germination percentage. Produced seedlings have attained a similar vigour index among media (p <0.05). Compost of date palm was more suitable for muskmelon stem elongation and leaf-enlarging capacity than perlite. However, the gustative quality of fruits was not significantly affected by the medium-types. Thus, it is concluded the promoising effect of compost of date palm as potting medium and substrate in soilless culture under greenhouse conditions unless a pertinent choice of cultures.


Keywords: compost, stability, maturity, germination, greenhouse, soilless culture

PDF

References

Abdel-Razzak, H. Alkoaik, F., Rashwan, M., Fulleros, R., &Ibrahim, M. (2018). Tomato waste compost as an alternative substrate to peat moss for the production of vegetable seedlings. Journal of Plant Nutrition, 42(3), 287–295. https://doi.org/10.1080/01904167.2018.1554682


Afriyie, E. Blankson, W., & Amoabeng, A. (2017). Effect of compost amendment on plant growth and yield of radish (Raphanus sativus L.). International Journal of Experimental Agriculture, 15(2), 1–6. https://doi.org/10.9734/JEAI/2017/30993


Alvarado, A. D., Bradford, K. J., & Hewitt, J. D. (1987). Osmotic priming of tomato seeds. Effects on germination, field emergence, seedling growth and fruit yield. Journal of American Society of Horticultural Science, 112(3), 427–432.


Angadi, V., Rai, P. K., & Bara, B. M. (2017). Effect of organic manures and biofertilizers on plant growth, seed yield and seedling characteristics in tomato (Lycopersicon esculentum Mill). Journal of Pharmacognosy and Phytochemistry, 6(3), 807–810.


Bernal, M., Paredes, C., Sanchez-Monedero, M., & Cegarra, J. (1998). Maturity and stability parameters of composts prepared with a wide range of organic wastes. Bioresource technology, 63(1), 91–99. https://doi.org/10.1016/S0960-8524(97)00084-9


Borji, H., Ghahsareh, A. M., & Jafarpour, M. (2010). Effects of the substrate on tomato in soilless culture. Research journal of agriculture and biological sciences, 6(6), 923–927. https://doi.org/10.5897/AJAR11.1148


Bouhouach, H., Marc, C., & Kouki, K. (2009). Compostage et valorisation des déchets oasiens pour l’amélioration des sols et de la productivité. Symposium international AGRUMED 2009. Gestion intégrée des ressources en eau et en sol et durabilité des systèmes de culture en zone Méditerranéenne. Rabat, IAV Hassan II, 15–16 Mai 2009.


Cai, H., Chen, T., Liu, H., Gao, D., Zheng, G., & Zhang, J. (2010). The effect of salinity and porosity of sewage sludge compost on the growth of vegetable seedlings. Scientia Horticulturae, 124(3), 381–386. https://doi.org/10.1016/j.scienta.2010.01.009


Ch’ng, H. Y., Ahmed, O. H., & AbMajid, N. M. (2014). Biochar and compost influence the phosphorus availability, nutrients uptake, and growth of maize (Zea mays L.) in tropical acid soil. Pak. J. Agri. Sci, 51(4), 797–806.


Dayo-Olagbende, G. O., Ayodele, O. J., & Ogunwale, G. I. (2018). Effect of the application of poultry manure and wood ash on maize (Zea mays L.) performance. Journal of Horticulture and Plant Research, 4(1), 11–16. https://doi.org/10.18052/www.scipress.com/JHPR.4.11


Farooq, M., Basra, S. M., Hafeez, K., & Ahmad, N. (2005). Thermal hardening: a new seed vigor enhancement tool in rice. J. Integ. Pl. Biol, 47(1), 187–193. https://doi.org/10.1111/j.1744-7909.2005.00031


Forster, J. C., Zech, W., & Wurdinger, E. (1993). Comparison of chemical and microbiological methods for the characterization of the maturity of composts from contrasting sources. Biology and Fertility of Soils, 16(2), 93–99.


Francou, C. (2003). Stabilisation de la matière organique au cours du compostage des déchets urbains: Influence de la nature des déchets et du procédé de compostage-Recherche d’indicateurs pertinents. INAPG (Agro Paris Tech).


Gastol, M., Domagala-Świątkiewicz, I., & Krośniak, M. (2011). Organic versus conventional-a comparative study on quality and nutritional value of fruit and vegetable juices. Biological Agriculture & Horticulture, 27(3–4), 310–319. https://doi.org/10.1080/01448765.2011.648726


Ghehsareh, A. M., Borji, H., & Jafarpour, M. (2011). Effect of some culture substrates (date palm, peat, cocopeat and perlite) on some growing indices and nutrient element uptake in greenhouse tomato. African Journal of Microbiology Research, 5(12), 1437–1442. https://doi.org/10.5897/AJMR10.786


Ghulam, N., Khan, J., Samad, A., & Noor Rahman, B. (2002). The growth of tomato plants in different potting mixes, under greenhouse conditions. Science vision, 8(1), 122–125.


Gill, S., & Al-Shankiti, A. (2015). Priming of Prosopis cineraria (L.) druce and Acacia tortilis (forssk) seeds with fulvic acid extracted from compost to improve germination and seedling vigor. Global J. Environ. Sci. Manage, 1(3), 225–232. https://doi.org/10.7508/gjesm.2015.03.005


Haddad, M. (2007). Effect of three substrates on growth, yield and quality of tomato by the use of geothermal water in the south of Tunisia. Journal of Food, Agriculture & Environment, 5(2), 175–178.


Herrera, F., Castillo, J. E., Chica, A. F., López Bellido, L. (2008). Use of municipal solid waste compost (MSWC) as a growing medium in the nursery production of tomato plants. Bioresource Technology, 99(2), 287–296. https://doi.org/10.1016/j.biortech.2006.12.042


Islam, M. A., Islam, S., Akter, A., Rahman, M. H., & Nandwani, D. (2017). Effect of organic and inorganic fertilizers on soil properties and the growth, yield and quality of tomato in Mymensingh, Bangladesh. Agriculture, 7(3), 1–7. https://doi.org/10.3390/agriculture7030018


International Seed Testing Association (1996). Seed Sci Technol, 24, 155–202.


Khan, A. A., Bibi, H., Ali, Z., Sharif, M., Shah, S.A., Ibadullah, H., Khan, K., Azeem, I., & Ali, S. (2017). Effect of compost and inorganic fertilizers on yield and quality of tomato. Academia Journal of Agricultural Research, 5(10), 287–293. https://doi.org/10.15413/ajar.2017.0135


Lazcano, C., Arnold, J., Tato, A., Zaller, J.G., & Domínguez, J. (2009). Compost and vermicompost as nursery pot components: Effects on tomato plant growth and morphology. Spanish Journal of Agricultural Research, 3(7), 944–951. https://doi.org/10.5424/SJAR/2009074-1107


Martin, C., & Brathwaite, R. (2012). Compost and compost tea: Principles and prospects as substrates and soil-borne disease management strategies in soil-less vegetable production. Biological Agriculture & Horticulture, 28(1), 1–33. https://doi.org/10.1080/01448765.2012.671516


Medina, E., Paredes, C., Pérez-Murcia, M. D., Bustamante, M. A., & Moral, R. (2009). Spent mushroom substrates as component of growing media for germination and growth of horticultural plants. Bioresource Technology, 100(18), 4227–4232. https://doi.org/10.1016/j.biortech.2009.03.055


Neher, D. A., Weicht, T.R., & Dunseith, P. (2015). Compost for management of weed seeds, pathogen, and early blight on brassicas in organic farmer fields. Agroecology and Sustainable Food Systems, 39(1) 3–18. https://doi.org/10.1080/21683565.2014.884516


Ofosu-Budu, G. K., Hogarh, J. N., Fobil, G. M., Quaye, A., Danso, S. K. A., & Carboo, D. (2010). Harmonizing procedures for the evaluation of compost maturity in two compost types in Ghana. Resources, conservation and recycling, 54 (3), 205–209. https://doi.org/10.1016/j.resconrec.2009.08.001


Olle, M., Ngouajio, M., & Siomos, A. (2012). Vegetable quality and productivity influenced by a growing medium: a review. Žemdirbystė Agriculture, 99(4), 399–408. https://doi.org/10.1016/j.resconrec.2009.08.001/10.635:631.879.4:631.878


Olojugba, M. R., & Opeyemi, S. (2020). Changes in some Soil properties, Growth and Yield of Tomato as Affected by the Application of Poultry Dropping and NPK Fertilizer on a Humid Alfisol in Southwestern Nigeria. Journal of Agriculture and Sustainability, 13(3), 19.


Radhouani, A., Benyahia, L., Lechaiheb, B., & Ferchichi, A. (2012). Valorization of compost of green wastes. 3rd International workshop on industrial biotechnology (IWIB). Sfax 23 April 2012.


Rahim, M. A., Alam, M. K., Rahman, M. D., Habibur, M. E., Rahmann, J. G., & Aksoy, U. (2014). Effects of organic fertilizers on the seed germination and seedling vigor of tomato. Proceedings of the 4th ISOFAR Scientific Conference. ‘Building Organic Bridges’, at the Organic World Congress 2014, 13–15 Oct., Istanbul, Turkey (eprint ID 23990).


Sanchez-Monedero, M. A., Roig, A., Cegarra, J., & Bernal, M. P. (1999). Relationships between water-soluble carbohydrate and phenol fractions and the humification indices of different organic wastes during composting. Bioresource Technology, 70(2), 193–201. https://doi.org/10.1016/S0960-8524(99)00018-8


Tiquia, S. M., & Tam, N. F. Y. (1998). Elimination of phytotoxicity during co-composting of spent pig-manure sawdust litter and pig sludge. Bioresources Technology, 65 (1–2), 43–49. https://doi.org/10.1016/S0960-8524(98)00024-8


Trupiano, D. (2017). The effects of biochar and its combination with compost on lettuce (Lactuca sativa l.) Growth, soil properties, and soil microbial activity and abundance. International Journal of Agronomy, 1(2), 1–12. https://doi.org/10.1155/2017/3158207


Tzortzakis, N. G., & Economakis, C. D. (2005). Shredded maize stems as an alternative substrate medium: effect on growth, flowering and yield of tomato in soilless culture. Journal of Vegetable Science, 11(2), 57–70. https://doi.org/10.1300/J484v11n02_06


Unal, M. (2015). The utilization of spent mushroom compost applied at different rates in tomato (Lycopersicon esculentum Mill.) seedling production. Emir. J. Food Agri, 27(9), 692–697. https://doi.org/10.9755/ejfa.2015-05-206


Verdonck, O., & Gabriëls, R. (1992). Reference method for the determination of physical properties of plant substrates, Acta Horticulturae, 302(1), 169–179. http://doi.org/10.17660/ActaHortic.1992.302.16


Zaller, J. G. (2007). Vermicompost in seedling potting media can affect germination, biomass allocation, yields and fruit quality of three tomato varieties. European Journal of Soil Biology, 43(1), 332–336. https://doi.org/10.1016/j.ejsobi.2007.08.020


Zbytniewski, R., & Buszewski, B. (2005). Characterization of natural organic matter (NOM) derived from sewage sludge compost. Part 1: chemical and spectroscopic properties. Bioresource technology, 96(4), 471–478. https://doi.org/10.1016/j.biortech.2004.05.018


Zucconi, F. A., Monaco, A., & Forte, M. (1985). Phytotoxins during the stabilization of organic matter. Composting of Agricultural and Other Wastes, 73–86.