Chemical composition and biological activity of Salvia officinalis essential oil

PDF

Authors: Miroslava Kačániová, Lucia Galovičová, Veronika Valková, Hana Ďuranová, Petra Borotová, Jana Štefániková, Nenad L. Vukovic, Milena Vukic, Simona Kunová, Soňa Felsöciová, Katarína Miklášová, Tatsiana Savitskaya and Dmitrij Grinshpan

Volume/Issue: Volume 24: Issue 2

Published online: 02 Dec 2021

Pages: 81 - 88

DOI: https://doi.org/10.2478/ahr-2021-0028


Abstract

The study was aimed at analyzing chemical composition, and biological and antibiofilm activity of Salvia officinalis L. essential oil (EO) with MALDI-TOF MS Biotyper. The main compounds of S. officinalis EO were a-thujone 24.6%, camphor 20.6%, 1,8-cineole 12.1%, and a-humulene 5.8%. Free radical scavenging activity was medium high. The highest antimicrobial activity was observed against Bacillus subtilis. Changes in the biofilm structure confirmed the inhibitory action of S. officinalis and the most pronounced effect was observed in B. subtilis biofilm. The highest inhibition in situ in antimicrobial activity was 78.45% at 125 µ.L−1 on apple for B. subtilis.


Keywords: sage essential oil, antimicrobial activity, antibiofilm profile, flavonoids, microorganisms

PDF

References

Abdallah, I. Z. A., Khattab, H. A. H., Sawiress, F. A. R., & El-Banna, R. A. S. (2010). Effect of Salvia officinalis L. (Sage) herbs on osteoporotic changes in aged non-cycling female rats. Medical Journal of Cairo University, 78(1), 1–9.


Adams, R. P. (2007). Identification of essential oil components by gas chromatography/mass spectroscopy. Allured publishing corporation Carol Stream, IL. USA, 469.


Altindal, D., & Altindal, N. (2016). Sage (Salvia officinalis) Oils. Essential Oils in Food Preservation, Flavor and Safety, 715–721. http://dx.doi.org/10.1016/b978-0-12-416641-7.00081-x


Anitha, K., Jaswitha, K., Subhashini, P., Annapurna, V., Sanjeev Rao, T., & Ashok Kumar, C.K. (2013). Wound healing activity of Salvia officinalis (sage). Journal of Global Trends in Pharmceutical Sciences, 4(1), 1007–1012.


Aríca, V., Aríca, S., Tutanc, M., Motor, S., Motor, V. K., & Dogan, M. (2010). Convulsion in infants as a result of oral use of garden sage. Turkish Archives of Pediatrics, 47, 67–68.


Badiee, P., Nasirzadeh, A. R., & Motaffaf, M. (2012). Comparison of Salvia officinalis L. essential oil and antifungal agents against candida species. Journal of Pharmacology and Technology Drug Research, 1, 1–5. http://dx.doi.org/10.7243/2050-120x-1-7


Bauner, J., Kuehnl, S., Rollinger, J. M., Scherer, O., Northoff, H., Stuppner, H., Werz, O., & Koeberle, A. (2012). Carnosol and carnosic acids from Salvia officinalis inhibit microsomal prostaglandin E2 synthase-1. Journal of Pharmacology and Experimental Therapeutics, 342(1), 169–176. http://dx.doi.org/10.1124/jpet.112.193847


Cenic-Milosevic, D., Tambur, Z., Bokonjic, D., Ivancajic, S., Stanojkovic, T., Grozdanic, N., & Juranic, Z. (2013). Antiproliferative effects of some medicinal plants on hela cells. Archive of Biological Sciences, 65(1), 65–70. http://dx.doi.org/10.2298/abs1301065m


Damyanova, S., Mollova, S., Stoyanova, A., & Gubenia, O. (2016). Chemical composition of Salvia officinalis L. essential oil from Bulgaria. Ukrainian Food Journal, 5(4), 695–700. http://dx.doi.org/10.24263/2304-974x-2016-5-4-8


Hassan, A., Usman, J., Kaleem, F., Omair, M., Khalid, A., & Iqbal, M. (2011). Evaluation of different detection methods of biofilm formation in the clinical isolates. Brazilian Journal of Infection Disaese, 15(4), 305–311. http://dx.doi.org/10.1590/s1413-86702011000400002


Kačániová, M., Terentjeva, M., Galovičová, L., Ivanišová, E., Štefániková, J., Valková, V.; Borotová, P., Kowalczewski, P. Ł., Kunová, S., Felšöciová, S., Tvrdá, E., Žiarovská, J., Prokeinová, B., & Vukovic, N. (2020). Biological activity and antibiofilm molecular profile of Citrus aurantium essential oil and its application in a food model. Molecules, 25(17), 3956. http://dx.doi.org/10.3390/molecules25173956


Kırmusaoğlu, S. (2019). Antimicrobials, antibiotic, resistance, antibiofilm strategies and activity methods, 1st ed, IntechOpen, London, United Kingdom, 99–102.


Miladinovic, D. & Miladinovic, L. J. (2000). Antimicrobial activity of essential oil of sage from Serbia. Facta Universitatis. Series: Physics, Chemistry and Technology, 2(2), 97–100.


Moghimi, R., Aliahmadi, A., McClements, D. J., & Rafati, H. (2017). Nanoemulsification of Salvia officinalis Essential Oil; The Impact on the Antibacterial Activity in Liquid and Vapour Phase. Journal of Bionanoscience, 11(1), 80–86. http://dx.doi.org/10.1166/jbns.2017.1407


Mohammad, S. M. (2011). A study on sage (Salvia officinalis). Journal of Applied Science and Research, 7(8), 1261–1262.


Oliveira, J. R., Vilela, P. G. F., Almeida, R. B. A., Oliveira, F. E., Carvalho, C. A. T., Camargo, S. E. A., Jorge, A. O. C., & Oliveira, L. D. (2019). Antimicrobial activity of noncytotoxic concentrations of Salvia officinalis extract against bacterial and fungal species from the oral cavity. General Dentistry, 434(1), 22–27.


Olmez, F. N., & Kayabasi, N. (2002). A research on the colors obtained from sage (Salvia officinalis L.) and their fastness values. Journal of Agricultural Sciences, 1, 31–36.


Ozcan, M. M., & Al Juhaimi, F. Y. (2011). Antioxidant and antifungal activity of some aromatic plant extracts. Journal of Medicinal Plants Research, 5(8), 1361–1366.


Pavić, V., Jakovljević, M., Molnar, M. & Jokić, S. (2019). Extraction of Carnosic Acid and Carnosol from Sage (Salvia officinalis L.) Leaves by Supercritical Fluid Extraction and Their Antioxidant and Antibacterial Activity. Plants, 8(1), 16. http://dx.doi.org/10.3390/plants8010016


Rota, C., Carraminana J. J., Burillo J., & Herrera A. (2004). In Vitro Antimicrobial Activity of Essential Oils from Aromatic Plants against Selected Foodborne Pathogens. Journal of Food Protection, 67(6), 1252–1256. http://dx.doi.org/10.4315/0362-028x-67.6.1252


Stîngu, C. S., Rodloff, A. C., Jentsch, H., Schaumann, R., & Eschrich, K. (2008). Rapid identification of oral anaerobic bacteria cultivated from subgingival biofilm by MALDI-TOF-MS. Oral Microbiology and Immunology, 23(5), 372–376. http://dx.doi.org/10.1111/j.1399-302x.2008.00438.x


Tadi, M., Boroujeni, H. M., Rafieian-Kopaei, M., & Sadrabad, E. K. (2020). Inhibitory effects of ethanolic extract of two Iranian pomegranates peel cultivars on Staphylococcus aureus and Salmonella typhimurium. Asian Journal of Agriculture and Biology, 8(3), 341–347. http://dx.doi.org/10.35495/ajab.2019.07.318


Tafi, A. A., Meshkini, S., Tukmechi, A., Alishahi, M., & Noori, F. (2020). Therapeutic and Histopathological Effect of Aloe vera and Salvia officinalis Hydroethanolic Extracts against Streptococcus iniae in Rainbow Trout. Archives of Razi Institute, 75(2), 275–287.


Van Den Dool, H. & Kratz, P. D. A. (1963). A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. Journal of Chromatography A, 11, 463–471. http://dx.doi.org/10.1016/s0021-9673(01)80947-x