Hydraulic performance assessment of a multi-layered landfill cover system under constant water ponding

PDF

Authors: Janarul Shaikh, Sudheer Kumar Yamsani, Sanjeet Sahoo, Sreedeep Sekharan and Ravi Ranjan Rakesh

Volume/Issue: Volume 25: Issue 2

Published online: 01 Nov 2022

Pages: 129 - 140

DOI: https://doi.org/10.2478/ahr-2022-0017


Abstract

The engineered multi-layered cover system (MLCS) is used to minimize rainwater infi ltration into the wastes accommodated in near surface waste disposal facility (NSDF). It is important to assess the hydraulic performance of MLCS before deploying it in the fi eld. For this purpose, an instrumented three-layered soil column representing MLCS was subjected to 1.5 m constant ponding head for 400 days. The variation of volumetric water content and soil water potential was monitored as a function of depth and time. The objective of the study is to understand the long-term hydraulic performance and rate of saturation of diff erent layers of MLCS. Under constant water ponding, the time to saturation for 0.3 m in surface layer, 0.6 m in drainage layer and 1.0 m in hydraulic barrier layer was observed as 24, 223 and 262 days, respectively. The numerical analysis of the MLCS predicted comparable time duration of 25, 234 and 272 days, respectively. It was noted that the numerical simulation performed by using measured wetting hydraulic parameters matched well with the experimental observation. The importance of soil specifi c calibration of water content sensors to improve the accuracy of observations was demonstrated. Percentage error in the estimation of layer specifi c soil water storage, clearly indicates that the volumetric water content measurements using profi le probe was marginally better than 5TM measurements.


Keywords: waste, disposal facility, cover system, sensor, numerical simulation, water infi ltration

PDF

References

Abbasi, F., Javaux, M., Vanclooster, M., & Feyen, J. (2012). Estimating hysteresis in the soil water retention curve from monolith experiments. Geoderma 189–190, 480–490. https://doi.org/10.1016/j.geoderma.2012.06.013


Abdolahzadeh, A. M., Lacroix Vachon, B., & Cabral, A. R. (2011). Evaluation of the effectiveness of a cover with capillary barrier effect to control percolation into a waste disposal facility. Can. Geotech. J., 48, 996–1009. https://doi.org/10.1139/t11-017


Albright, W. H., Benson, C. H., & Apiwantragoon, P. (2012). Field hydrology of landfill final covers with composite barrier layers. J. Geotech. Geoenvironmental Eng., 139, 1–12. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000741


Albright, W. H., Benson, C. H., Gee, G. W., Abichou, T., Tyler, S. W., & Rock, S. A. (2006). Field performance of three compacted clay landfill covers. Vadose Zo. J., 5, 1157–1171. https://doi.org/10.2136/vzj2005.0134


Albright, W. H., Benson, C. H., Gee, G. W., Roesler, A. C., Abichou, T., Apiwantragoon, P., Lyles, B. F., & Rock, S.A. (2004). Field water balance of landfill final covers. J. Environ. Qual., 33, 2317–2332. https://doi.org/10.2134/jeq2004.2317


Aljaradin, M., & Persson, K.M. (2015). Numerical evaluation of different landfill daily cover in semiarid areas-Jordan. Int. J. Environ. Waste Manag. 16, 95–111. http://dx.doi.org/10.1504/IJEWM.2015.071286


Andreas, L., Diener, S., & Lagerkvist, A. (2014). Steel slags in a landfill top cover – Experiences from a full-scale experiment. Waste Manag., 34, 692–701. https://doi.org/10.1016/j.wasman.2013.12.003


Barnswell, K., & Dwyer, D. (2011). Assessing the performance of evapotranspiration covers for municipal solid waste landfills in Northwestern Ohio. J. Environ. Eng., 137, 301–305. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000326


Benson, B. C. H., Daniel, D. E., & Boutwell, G.P. (1999). Field performance of compacted clay liners. J. Geotech. Geoenvironmental Eng., 125, 390–403. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:5(390)


Benson, C., Abichou, T., Albright, W., Gee, G., & Roesler, A. (2001). Field evaluation of alternative earthen final covers. Int. J. Phytoremediation, 3, 105–127. https://doi.org/10.1080/15226510108500052


Benson, C. H., & Khire, M. V. (1995). Earthen covers for semiarid and arid climates. Landfill Closures-Environmental Protection and Land Recovery, 201–217.


Benson, C. H., Thorstad, P. A., Jo, H.-Y., & Rock, S. A. (2007). Hydraulic performance of geosynthetic clay liners in a landfill final cover. J. Geotech. Geoenvironmental Eng., 133, 814–827. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:7(814)


Bohnhoff, G. L., Ogorzalek, A. S., Benson, C. H., Shackelford, C. D., & Apiwantragoon, P. (2009). Field data and water-balance predictions for a monolithic cover in a semiarid climate. J. Geotech. Geoenvironmental Eng., 135, 333–348. https://doi.org/10.1061/(ASCE)1090-0241(2009)135:3(333)


Brooks, R. H., & Corey, A. T. (1966). Properties of porous media affecting fluid flow. Journal of the irrigation and drainage division, 92(2), 61–88. https://doi.org/10.1061/JRCEA4.0000425


Chapuis, R. P. (2013). Full-scale evaluation of the performance of three compacted clay liners. Geotech. Test. J., 36, 1–9. https://doi.org/10.1520/GTJ20120198


Cuevas, J., Ruiz, A. I., de Soto, I. S., Sevilla, T., Procopio, J. R., Da Silva, P., Gismera, M. J., Regadío, M., Sánchez Jiménez, N., Rodríguez Rastrero, M., & Leguey, S. (2012). The performance of natural clay as a barrier to the diffusion of municipal solid waste landfill leachates. J. Environ. Manage., 95, S175–S181. https://doi.org/10.1016/j.jenvman.2011.02.014


Fredlund, D. G., Sheng, D., & Zhao, J. (2011). Estimation of soil suction from the soil-water characteristic curve. Canadian geotechnical journal, 48(2), 186–198. https://doi.org/10.1139/T10-060


Gallage, C., Kodikara, J., & Uchimura, T. (2013). Laboratory measurement of hydraulic conductivity functions of two unsaturated sandy soils during drying and wetting processes. Soils Found, 53(3), 417–430. https://doi.org/10.1016/j.sandf.2013.04.004


Gapak, Y., & Tadikonda, V. B. (2018). Hysteretic water-retention behavior of bentonites. Journal of Hazardous, Toxic, and Radioactive Waste, 22(3), 04018008. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000398


Guerrero, L. A., Maas, G., & Hogland, W. (2013). Solid waste management challenges for cities in developing countries. Waste Manag., 33(1), 220–232. https://doi.org/10.1016/j.wasman.2012.09.008


Harnas, F. R., Rahardjo, H., Leong, E. C., & Wang, J. Y. (2014). Experimental study on dual capillary barrier using recycled asphalt pavement materials. Can. Geotech. J., 51, 1165–1177. https://doi.org/10.1139/cgj-2013-0432


Hauser, V. L., Weand, B. L., & Gill, M. D. (2001). Natural covers for landfills and buried waste. Journal of Environmental Engineering, 127(9), 768–775. https://doi.org/10.1061/(ASCE)0733-9372(2001)127:9(768)


Henken-Mellies, W.U., & Schweizer, A. (2011). Long-term performance of landfill covers – Results of lysimeter test fields in Bavaria (Germany). Waste Manag. Res., 29, 59–68. https://doi.org/10.1177/0734242X10385748


Ibrahim, A., Mukhlisin, M., & Jaafar, O. (2014). Rainfall infiltration through unsaturated layered soil column. Sains Malaysiana, 43, 1477–1484.


Indrawan, I. G. B., Rahardjo, H., & Leong, E.-C. (2007). Drying and wetting characteristics of a two-layer soil column. Can. Geotech. J., 44, 20–32. https://doi.org/10.1139/t06-090


Kelln, C. J., Barbour, S. L., Elshorbagy, A., & Qualizza, C. (2006). Long-term performance of a reclamation cover: the evaluation of hydraulic properties and hydrologic response. Unsaturated Soil, 813–824. https://doi.org/10.1061/40802(189)64


Khire, M. V., Benson, C. H., & Bosscher, P. J. (2000). Capillary barriers: Design variables and water balance. J. Geotech. Geoenvironmental Eng., 126, 695–708.


Kraus, J. F., Benson, C. H., Erickson, A. E., & Chamberlain, E. J. (1997). Freeze-thaw cycling and hydraulic conductivity of bentonite barriers. J. Geotech. Geoenvironmental Eng., 123, 229–238. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:3(229)


Laner, D., Crest, M., Scharff, H., Morris, J. W. F., & Barlaz, M. A. (2012). A review of approaches for the long-term management of municipal solid waste landfills. Waste Manag., 32, 498–512. https://doi.org/10.1016/j.wasman.2011.11.010


Lee, L. M., Kassim, A., & Gofar, N. (2011). Performances of two instrumented laboratory models for the study of rainfall infiltration into unsaturated soils. Eng. Geol., 117, 78–89. https://doi.org/10.1016/j.enggeo.2010.10.007


Li, J. H., Du, L., Chen, R., & Zhang, L. M. (2013). Numerical investigation of the performance of covers with capillary barrier effects in South China. Comput. Geotech., 48, 304–315. https://doi.org/10.1016/j.compgeo.2012.08.008


Luellen, J. R., & Brydges, J. M. (2005). Long-term hydraulic performance evaluation for a multilayer closure cap. Pract. Period. Hazard. Toxic Radioact. Waste Manage., 9, 237–244. https://doi.org/10.1061/(ASCE)1090-025X(2005)9:4(237)


McCartney, J. S., & Zornberg, J. G. (2010). Effects of infiltration and evaporation on geosynthetic capillary barrier performance. Can. Geotech. J., 47, 1201–1213. https://doi.org/10.1139/T10-024


McGuire, P. E., Andraski, B. J., & Archibald, R. E. (2009). Case study of a full-scale evapotranspiration cover. J. Geotech. and Geoenvir. Engrg., 135, 316–332. https://doi.org/10.1061/(ASCE)1090-0241(2009)135:3(316)


Melchior, S., Sokollek, V., Berger, K., Vielhaber, B., & Steinert, B. (2010). Results from 18 years of in situ performance testing of landfill cover systems in Germany. J. Environ. Eng., 136, 815–823. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000200


Mijares, R. G., Khire, M. V., & Johnson, T. (2012). Field-scale evaluation of lysimeters versus actual earthen covers. Geotech. Test. J., 35, 31–40. https://doi.org/10.1520/GTJ103577


Mualem, Y. (1976). Hysteretical models for prediction of the hydraulic conductivity of unsaturated porous media. Water Resour. Res., 12, 1248–1254. https://doi.org/10.1029/WR012i006p01248


Ng, C. W. W., Coo, J. L., Chen, Z. K., & Chen, R., (2016). Water infiltration into a new three-layer landfill cover system. J. Environ. Eng., 142, 04016007-1-12. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001074


Ng, C. W. W., & Leung, A. K. (2012). Measurements of drying and wetting permeability functions using a new stress-controllable soil column. J. Geotech. Geoenvironmental Eng., 138, 58–68. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000560


Nyhan, J. W., Shofield, T. G., & Starmer, R. H. (1997). A water balance study of four landfill cover designs varying in slope for semiarid regions. J. Environ. Qual., 26, 1385–1392. https://doi.org/10.2134/jeq1997.00472425002600050026x


Ogorzalek, A. S., Bohnhoff, G. L., Shackelford, C. D., Benson, C. H., & Apiwantragoon, P. (2008). Comparison of field data and water-balance predictions for a capillary barrier cover. J. Geotech. Geoenvironmental Eng., 134, 470–486. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:4(470)


Parent, S. É., & Cabral, A. (2006). Design of inclined covers with capillary barrier effect. Geotech. Geol. Eng., 24, 689–710. https://doi.org/10.1007/s10706-005-3229-9


Rahardjo, H., Santoso, V. A., Leong, E. C., Ng, Y. S., & Hua, C. J. (2012). Performance of an instrumented slope covered by a capillary barrier system. J. Geotech. Geoenvironmental Eng., 138, 481–490. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000600


Ribeiro, A. G. C., de Azevedo, R. F., Amorim, N. R., & Azevedo, I. D., (2010). Field performance and numerical analysis of cover systems. Electron. J. Geotech. Eng., 15 N, 1337–1352.


Sadek, S., Ghanimeh, S., & El-Fadel, M. (2007). Predicted performance of clay-barrier landfill covers in arid and semi-arid environments. Waste Manag., 27, 572–583. https://doi.org/10.1016/j.wasman.2006.06.008


Scanlon, B. R., Reedy, R. C., Keese, K. E., & Dwyer, S. F. (2005). Evaluation of evapotranspirative covers for waste containment in arid and semiarid regions in the Southwestern USA’. Vadose Zo. J., 4, 55–71. https://doi.org/10.2136/vzj2005.0055a


Shaikh, J., Yamsani, S. K., Sekharan, S., & Rakesh, R. R. (2018). Performance evaluation of profile probe for continuous monitoring of volumetric water content in multilayered cover system. J. Environ. Eng., 144, 04018078-1-14. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001424


Shaikh, J., Yamsani, S. K., Sekharan, S., & Rakesh, R. R. (2019). Performance evaluation of 5TM sensor for real-time monitoring of volumetric water content in landfill cover system. Advances in Civil Engineering Materials, 8(1), 322–335. https://doi.org/10.1520/ACEM20180091


Šimůnek, J., Šejna, M., & van Genuchten, M. T. (1998). The Hydrus-2D software package for simulating water flow and solute transport in two-dimensional variably saturated media. Igwmc – Tps – 53 Version, 2, 167.


Tan, S. H., Wong, S. W., Chin, D. J., Lee, M. L., Ong, Y. H., Chong, S. Y., & Kassim, A. (2018). Soil column infiltration tests on biomediated capillary barrier systems for mitigating rainfall-induced landslides. Environ. Earth Sci. 77, 1–13. https://doi.org/10.1007/s12665-018-7770-2


Topp, G. C., Davis, J. L., & Annan, A. P. (1980). Electromagnetic determination of soil water content: measruements in coaxial transmission lines. Water Resour. Res., 16, 574–582. https://doi.org/10.1029/WR016i003p00574


Touma, J., Vachaud, G., & Parlange, J. Y. (1984). Air and water flow in a sealed, ponded vertical soil column: Experiment and model. Soil Science, 137(3), 181–187.


Travar, I., Andreas, L., Kumpiene, J., & Lagerkvist, A. (2015). Development of drainage water quality from a landfill cover built with secondary construction materials. Waste Manag., 35, 148–158. https://doi.org/10.1016/j.wasman.2014.09.016


Tripathy, S., Al-khyat, S., Cleall, P. J., Baille, W., & Schanz, T. (2016). Soil suction measurement of unsaturated soils with a sensor using fixed-matrix porous ceramic discs. Indian Geotech. J., 46, 252–260. https://doi.org/10.1007/s40098-016-0200-z


Turner, D. A., Beaven, R. P., & Woodman, N. D. (2017). Evaluating landfill aftercare strategies: A life cycle assessment approach. Waste Manag., 63, 417–431. https://doi.org/10.1016/j.wasman.2016.12.005


USEPA. (1989). Requirements for hazardous waste landfill design, construction, and closure. Semin. Publ. EPA, 1–127.


USEPA. (1991). Design and construction of RCRA-CERCLA final covers. Semin. Peblication EPA/625/4, 1–208.


Wang, Z., Feyen, J., Nielsen, D. R., & Van Genuchten, M. T. (1997). Two-phase flow infiltration equations accounting for air entrapment effects. Water Resour. Res., 33, 2759–2767. https://doi.org/10.1029/97WR01708


Wijeyesekera, D. C., O’Connor, K., & Salmon, D. E. (2001). Design and performance of a compacted clay barrier through a landfill. Eng. Geol., 60, 295–305. https://doi.org/10.1016/S0013-7952(00)00110-1


Wosten, J. H. M., Lilly, A., Nemes, A., & Le Bas, C. (1999). Development and use of a database of hydraulic properties of European soils. Geoderma, 90, 169–185. https://doi.org/10.1016/S0016-7061(98)00132-3


Wu, H., Wen, Q., Hu, L., Gong, M., & Tang, Z. (2017). Feasibility study on the application of coal gangue as landfill liner material. Waste Manag., 63, 161–171. https://doi.org/10.1016/j.wasman.2017.01.016


Yanful, E. K., Morteza Mousavi, S., & De Souza, L. P. (2006). A numerical study of soil cover performance. J. Environ. Manage., 81, 72–92. https://doi.org/10.1016/j.jenvman.2005.10.006


Yang, H., Rahardjo, H., & Leong, E.-C. (2006). Behavior of Unsaturated Layered Soil Columns during Infiltration. J. Hydrol. Eng., 11, 329–337. https://doi.org/10.1061/(ASCE)1084-0699(2006)11:4(329)


Yang, H., Rahardjo, H., Leong, E.-C., & Fredlund, D. G. (2004). Factors affecting drying and wetting soil-water characteristic curves of sandy soils. Can. Geotech. J., 41, 908–920. https://doi.org/10.1139/t04-042


Zhan, T. L., Ng, C. W., & Fredlund, D. G. (2007). Field study of rainfall infiltration into a grassed unsaturated expansive soil slope. Can. Geotech. J., 44, 392–408. https://doi.org/10.1139/t07-001


Zhan, T. L. T., Li, H., Jia, G. W., Chen, Y. M., & Fredlund, D. G. (2014). Physical and numerical study of lateral diversion by three-layer inclined capillary barrier covers under humid climatic conditions. Can. Geotech. J., 51, 1438–1448. https://doi.org/10.1139/cgj-2013-0449


Zhang, W., & Sun, C. (2014). Parametric analyses of evapotranspiration landfill covers in humid regions. J. Rock Mech. Geotech. Eng., 6, 356–365. https://doi.org/10.1016/j.jrmge.2013.12.005


Zornberg, J. G., LaFountain, L., & Caldwell, J. A. (2003). Analysis and design of evapotranspirative cover for hazardous waste landfill. J. Geotech. Geoenvironmental Eng., 129, 427–438. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:6(427)