Soil microplastics – current research trends and challenges: preliminary results of the earthworm Eisenia fetida impact on glitters

PDF

Authors: Agnieszka Dąbrowska

Volume/Issue: Volume 25: Issue 2

Published online: 01 Nov 2022

Pages: 141 - 150

DOI: https://doi.org/10.2478/ahr-2022-0018


Abstract

This paper shortly introduces the topic of soil microplastics by presenting a comprehensive review of the current state of the art in this fi eld. It focuses mainly on the role of primary microplastics, particularly glitters, due to their large surface-to-volume ratio. From conclusions about current challenges and research directions, after analysis of the crucial “knowledge gaps “, one can point out the lack of a detailed description of the infl uence of microplastics on biota. The earthworms are promising model organisms that may play in soil ecosystems a similar role to the bivalves in waters. Thus, this mainly review paper was enlarged by the preliminary results of studies on glitters and bioglitters naturally aged in milli-Q water and soil with Eisenia fetida. Fourier-transform Infrared (FTIR, microscopy in the refl ectance mode) and Raman spectroscopy (780 nm) were used to identify the subsequent notable changes in studied materials. The presence of the polymer (PET) core in the standard glitter particles is confi rmed. In addition, the leakage of dyes from bioglitters was observed within the 9-week experiment. Tested bioglitters decompose in a slightly diff erent way. Blue and pink pigments had entirely diff erent stability as only one disappeared without a trace under UV light (blu), and the other remained stable in solution, confi rmed by UV-Vis spectra. The nephelometry shows sedimentation of glitters after turbulent agents in the environment. This paper presents the natural weathering of primary microplastics in the presence of Eisenia fetida.


Keywords: Eisenia fetida, glitters, soil microplastics, Raman spectroscopy, primary microplastics

PDF

References

Ali, I., Cheng, Q., Ding, T., Yiguang, Q., Yuechao, Z., Sun, H., Peng, C., Naz, I., Li, J., & Liu, J. (2021). Micro- and nanoplastics in the environment: Occurrence, detection, characterization and toxicity – A critical review. Journal of Cleaner Production, 313(March), 127863. https://doi.org/10.1016/j.jclepro.2021.127863


Araujo, C. F., Nolasco, M. M., Ribeiro, A. M. P., & Ribeiro-Claro, P. J. A. (2018). Identification of microplastics using Raman spectroscopy: Latest developments and future prospects. Water Research, 142, 426–440. https://doi.org/10.1016/j.watres.2018.05.060


Dela Cruz, M., Fukui, M., & Hudgins, S. (2018). All that glitter: Chemical pneumonitis from liquid glitter contents of a broken decorative phone case. Visual Journal of Emergency Medicine, 13(June), 27–28. https://doi.org/10.1016/j.visj.2018.07.034


Ding, W., Li, Z., Qi, R., Jones, D. L., Liu, Q., Liu, Q., & Yan, C. (2021). Effect thresholds for the earthworm Eisenia fetida: Toxicity comparison between conventional and biodegradable microplastics. Science of the Total Environment, 781, 146884. https://doi.org/10.1016/j.scitotenv.2021.146884


Dittbrenner, N., Moser, I., Triebskorn, R., & Capowiez, Y. (2011). Assessment of short and long-term effects of imidacloprid on the burrowing behaviour of two earthworm species (Aporrectodea caliginosa and Lumbricus terrestris) by using 2D and 3D post-exposure techniques. Chemosphere, 84(10), 1349–1355. https://doi.org/10.1016/j.chemosphere.2011.05.011


Fossi, M. C., Akdogan, Z., & Guven, B. (2019). This paper has been recommended for acceptance by Microplastics in the environment : A critical review of current understanding and identification of future research needs. Environmental Pollution, 254, 113011. https://doi.org/10.1016/j.envpol.2019.113011


Galloway, T., & Lewis, C. (2017). Marine microplastics. Current Biology, 27(11), R445–R446. https://doi.org/10.1016/j.cub.2017.01.043


Gonçalves, J. M., & Bebianno, M. J. (2021). Nanoplastics impact on marine biota: A review. Environmental Pollution, 273. https://doi.org/10.1016/j.envpol.2021.116426


Green, D. S., Jefferson, M., Boots, B., & Stone, L. (2021). All that glitters is litter? Ecological impacts of conventional versus biodegradable glitter in a freshwater habitat. Journal of Hazardous Materials, 402(September), 124070. https://doi.org/10.1016/j.jhazmat.2020.124070


Guo, J. J., Huang, X. P., Xiang, L., Wang, Y. Z., Li, Y. W., Li, H., Cai, Q. Y., Mo, C. H., & Wong, M. H. (2020). Source, migration and toxicology of microplastics in soil. Environment International, 137(July), 105263. https://doi.org/10.1016/j.envint.2019.105263


He, D., Luo, Y., Lu, S., Liu, M., Song, Y., & Lei, L. (2018). Microplastics in soils: Analytical methods, pollution characteristics and ecological risks. TrAC – Trends in Analytical Chemistry, 109, 163–172. https://doi.org/10.1016/j.trac.2018.10.006


Huerta Lwanga, E., Gertsen, H., Gooren, H., Peters, P., Salánki, T., van der Ploeg, M., Besseling, E., Koelmans, A. A., & Geissen, V. (2017). Incorporation of microplastics from litter into burrows of Lumbricus terrestris. Environmental Pollution, 220, 523–531. https://doi.org/10.1016/j.envpol.2016.09.096


Huerta Lwanga, E., Thapa, B., Yang, X., Gertsen, H., Salánki, T., Geissen, V., & Garbeva, P. (2018). Decay of low-density polyethylene by bacteria extracted from earthworm’s guts: A potential for soil restoration. Science of the Total Environment, 624, 753–757. https://doi.org/10.1016/j.scitotenv.2017.12.144


Kwak, J. Il & An, Y. J. (2021). Microplastic digestion generates fragmented nanoplastics in soils and damages earthworm spermatogenesis and coelomocyte viability. Journal of Hazardous Materials, 402(September), 124034. https://doi.org/10.1016/j.jhazmat.2020.124034


Lackmann, C., Velki, M., Šimić, A., Müller, A., Braun, U., Ečimović, S., & Hollert, H. (2022). Two types of microplastics (polystyrene-HBCD and car tire abrasion) affect oxidative stress-related biomarkers in earthworm Eisenia andrei in a time-dependent manner. Environment International, 163(March). https://doi.org/10.1016/j.envint.2022.107190


Lahive, E., Cross, R., Saarloos, A. I., Horton, A. A., Svendsen, C., Hufenus, R., & Mitrano, D. M. (2022). Earthworms ingest microplastic fibres and nanoplastics with effects on egestion rate and long-term retention. Science of the Total Environment, 807, 151022. https://doi.org/10.1016/j.scitotenv.2021.151022


Lang, M., Wang, G., Yang, Y., Zhu, W., Zhang, Y., Ouyang, Z., & Guo, X. (2022). The occurrence and effect of altitude on microplastics distribution in agricultural soils of Qinghai Province, northwest China. Science of the Total Environment, 810, 152174. https://doi.org/10.1016/j.scitotenv.2021.152174


Luo, Y., Gibson, C. T., Chuah, C., Tang, Y., Naidu, R., & Fang, C. (2022). Applying Raman imaging to capture and identify microplastics and nanoplastics in the garden. Journal of Hazardous Materials, 426(November), 127788. https://doi.org/10.1016/j.jhazmat.2021.127788


Manzoor, S., Naqash, N., Rashid, G., & Singh, R. (2021). Plastic Material Degradation and Formation of Microplastic in the Environment: A Review. Environmental Pollution 274, 4, 0–3. https://doi.org/10.1016/j.matpr.2021.09.379


McTavish, M. J., & Murphy, S. D. (2021a). Rapid redistribution and long-term aggregation of mulch residues by earthworms (Lumbricus terrestris). Applied Soil Ecology, 169(August), 104195. https://doi.org/10.1016/j.apsoil.2021.104195


McTavish, M. J., & Murphy, S. D. (2021b). Three-dimensional mapping of earthworm (Lumbricus terrestris) seed transport. Pedobiologia, 87–88(June), 150752. https://doi.org/10.1016/j.pedobi.2021.150752


Najjar, K., & Bridge, C. M. (2020). SEM-EDS analysis and characterization of glitter and shimmer cosmetic particles. Forensic Science International, 317, 110527. https://doi.org/10.1016/j.forsciint.2020.110527


Ng, E. L., Huerta Lwanga, E., Eldridge, S. M., Johnston, P., Hu, H. W., Geissen, V., & Chen, D. (2018). An overview of microplastic and nanoplastic pollution in agroecosystems. Science of the Total Environment, 627, 1377–1388. https://doi.org/10.1016/j.scitotenv.2018.01.341


Praveena, S. M., Shaifuddin, S. N. M., & Akizuki, S. (2018). Exploration of microplastics from personal care and cosmetic products and its estimated emissions to marine environment: An evidence from Malaysia. Marine Pollution Bulletin, 136(September), 135–140. https://doi.org/10.1016/j.marpolbul.2018.09.012


Rogasik, H., Schrader, S., Onasch, I., Kiesel, J., & Gerke, H. H. (2014). Micro-scale dry bulk density variation around earthworm (Lumbricus terrestris L.) burrows based on X-ray computed tomography. Geoderma, 213, 471–477. https://doi.org/10.1016/j.geoderma.2013.08.034


Sajjad, M., Huang, Q., Khan, S., Khan, M. A., Liu, Y., Wang, J., Lian, F., Wang, Q., & Guo, G. (2022). Microplastics in the soil environment: A critical review. Environmental Technology and Innovation, 27, 102408. https://doi.org/10.1016/j.eti.2022.102408


Schell, T., Hurley, R., Buenaventura, N. T., Mauri, P. V., Nizzetto, L., Rico, A., & Vighi, M. (2022). Fate of microplastics in agricultural soils amended with sewage sludge: Is surface water runoff a relevant environmental pathway? Environmental Pollution, 293(November), 118520. https://doi.org/10.1016/j.envpol.2021.118520


Sun, W., Meng, Z., Li, R., Zhang, R., Jia, M., Yan, S., Tian, S., Zhou, Z., & Zhu, W. (2021). Joint effects of microplastic and dufulin on bioaccumulation, oxidative stress and metabolic profile of the earthworm (Eisenia fetida). Chemosphere, 263, 128171. https://doi.org/10.1016/j.chemosphere.2020.128171


Tagg, A. S., & Ivar do Sul, J. A. (2019). Is this your glitter? An overlooked but potentially environmentally-valuable microplastic. Marine Pollution Bulletin, 146(May), 50–53. https://doi.org/10.1016/j.marpolbul.2019.05.068


Tian, L., Jinjin, C., Ji, R., Ma, Y., & Yu, X. (2022). Microplastics in agricultural soils: sources, effects, and their fate. Current Opinion in Environmental Science and Health, 25, 100311. https://doi.org/10.1016/j.coesh.2021.100311


Vernoud, L., Bechtel, H. A., Martin, M. C., Reffner, J. A., & Blackledge, R. D. (2011). Characterization of multilayered glitter particles using synchrotron FT-IR microscopy. Forensic Science International, 210(1–3), 47–51. https://doi.org/10.1016/j.forsciint.2011.01.033


Wang, C., Yu, J., Lu, Y., Hua, D., Wang, X., & Zou, X. (2021). Biodegradable microplastics (BMPs): a new cause for concern? Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-021-16435-4


Wang, Q., Feng, X., Liu, Y., Cui, W., Sun, Y., Zhang, S., & Wang, F. (2022). Effects of microplastics and carbon nanotubes on soil geochemical properties and bacterial communities. Journal of Hazardous Materials, 433(March), 128826. https://doi.org/10.1016/j.jhazmat.2022.128826


Xu, G., Yang, Y., & Yu, Y. (2021). Size effects of polystyrene microplastics on the accumulation and toxicity of (semi-) metals in earthworms. Environmental Pollution, 291(July), 118194. https://doi.org/10.1016/j.envpol.2021.118194


Ya, H., Jiang, B., Xing, Y., Zhang, T., Lv, M., & Wang, X. (2021). Recent advances on ecological effects of microplastics on soil environment. Science of the Total Environment, 798, 149338. https://doi.org/10.1016/j.scitotenv.2021.149338


Yurtsever, M. (2019). Tiny, shiny, and colorful microplastics: Are regular glitters a significant source of microplastics? Marine Pollution Bulletin, 146(July), 678–682. https://doi.org/10.1016/j.marpolbul.2019.07.009


Zhang, L., Sintim, H. Y., Bary, A. I., Hayes, D. G., Wadsworth, L. C., Anunciado, M. B., & Flury, M. (2018). Interaction of Lumbricus terrestris with macroscopic polyethylene and biodegradable plastic mulch. Science of the Total Environment, 635, 1600–1608. https://doi.org/10.1016/j.scitotenv.2018.04.054