Analysis of precipitation in the Danube Lowland (Slovakia) in 1921–2020

PDF

Authors: Vladimír Kišš, Ján Čimo, Andrej Tárník and Jakub Pagáč

Volume/Issue: Volume 25: Issue 2

Published online: 01 Nov 2022

Pages: 197 - 202

DOI: https://doi.org/10.2478/ahr-2022-0024


Abstract

Abstract Climate change is increasingly occurring not only in Slovakia and Europe, but worldwide. One of the consequences is frequent droughts alternating with extreme rainfall. Drought, especially in the spring months, causes water shortages in the soil and limited crop growth. Extreme rainfall causes frequent fl oods and destroys crops and property. The aim of this work was to statistically evaluate precipitation during January–December for the period 1921–2020 in the most fertile part of Slovakia – the Danube Lowland. The results show a statistically signifi cant (p <0.10) decrease in precipitation in April and an increase in September, with the annual total precipitation from 535 to 600 mm (except for extremes in some years). The work provides a statistical analysis of changes and rainfall distributions over 100 years, which can help identify and address drought problems.


Keywords: precipitation, Mann-Kendall test, drought, Danube Lowland

PDF

References

Betts, R. A., Alfieri, L., Bradshaw, C., Caesar, J., Feyen, L., Friedlingstein, P., Gohar, L., Koutroulis, A., Lewis, K., Morfopoulos, C., Papadimitriou, L., Richardson, K. J., Tsanis, I., & Wyser, K. (2018). Changes in climate extremes, fresh water availability and vulnerability to food insecurity projected at 1.5 °C and 2 °C global warming with a higher-resolution global climate model. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2119), 20160452. https://doi.org/10.1098/rsta.2016.0452


Brezianská, K., & Vitková, J. (2015). Analýza bezzrážkových období a ich vplyv na zásobu vody v pôde na Záhorskej nížine [Analyse of Periods Without Precipitation and their Influence on Soil Water Storage at Záhorská Lowland]. Acta Hydrologica Slovaca, 16 (TC1), 260–266.


Buhairi, M. H. (2010). Analysis of monthly, seasonal and annual air temperature variability and trends in Taiz city – Republic of Yemen. Journal of Environmental Protection, 01(04), 401–409. https://doi.org/10.4236/jep.2010.14046


Čimo, J., Aydin, E., Šinka, K., Tárník, A., Kišš, V., Halaj, P., Toková, L., & Kotuš, T. (2020). Change in the Length of the Vegetation Period of Tomato (Solanum lycopersicum L.), White Cabbage (Brassica oleracea L. var. capitata) and Carrot (Daucus carota L.) Due to Climate Change in Slovakia. Agronomy-Basel, 10(8). https://doi.org/10.3390/agronomy10081110


Čimo, J., Kotuš, T., Kišš, V., & Shaikh, J. (2021). Evaluating manifestations in climate change of Danube lowland in Slovakia. 21st International Multidisciplinary Scientific GeoConference SGEM 2021 (pp. 277–284). https://doi.org/10.5593/sgem2021/4.1/s19.45


Eekhout, J. P., Hunink, J. E., Terink, W., & De Vente, J. (2018). Why increased extreme precipitation under climate change negatively affects water security. Hydrology and Earth System Sciences, 22(11), 5935–5946. https://doi.org/10.5194/hess-22-5935-2018


European state of the climate 2020. (2021, April 18). Copernicus. https://climate.copernicus.eu/ESOTC/2020


Fendeková, M., Gauster, T., Labudová, L., Vrablíková, D., Danáčová, Z., Fendek, M., & Pekárová, P. (2018). Analysing 21st century meteorological and hydrological drought events in Slovakia. Journal of Hydrology and Hydromechanics, 66(4), 393–403. https://doi.org/10.2478/johh-2018-0026


Gocic, M., & Trajkovic, S. (2013). Analysis of changes in meteorological variables using Mann-Kendall and sen‘s slope estimator statistical tests in Serbia. Global and Planetary Change, 100, 172–182. https://doi.org/10.1016/j.gloplacha.2012.10.014


Hamed, K. H. (2008). Trend detection in hydrologic data: The Mann-Kendall trend test under the scaling hypothesis. Journal of Hydrology, 349(3–4), 350–363. https://doi.org/10.1016/j.jhydrol.2007.11.009


Karpouzos, D. K., Kavalieratou, S., & Babajimopoulos, C. (2010). Trend Analysis of Precipitation Data in Pieria Region (Greece). European Water, 30, 31–40.


Kendall, M. G. (1975). Rank correlation methods: 10 tab.


Kim, S., Sharma, A., Wasko, C., & Nathan, R. (2022). Linking total precipitable water to precipitation extremes globally. Earth‘s Future, 10(2). https://doi.org/10.1029/2021ef002473


Kišš, V., Pagáč, J., Čimo, J., & Tárník, A. (2022). Visualisation of changes in vegetation periods due to climate change in Slovakia and their predictions for the period 2050, 2080 and 2110. In Ecological and environmental engineering: 3rd international scientific conference, 28 June–1 July 2022, Poznań : Book of abstracts.


Koutroulis, A., Papadimitriou, L., Grillakis, M., Tsanis, I., Wyser, K., & Betts, R. (2018). Freshwater vulnerability under high end climate change. A pan-European assessment. Science of The Total Environment, 613–614, 271–286. https://doi.org/10.1016/j.scitotenv.2017.09.074


Kundzewicz, Z., Radziejewski, M., & Pínskwar, I. (2006). Precipitation extremes in the changing climate of Europe. Climate Research, 31, 51–58. https://doi.org/10.3354/cr031051


Kunkel, K. E., Andsager, K., & Easterling, D. R. (1999). Long-term trends in extreme precipitation events over the conterminous United States and Canada. Journal of Climate, 12(8), 2515–2527. https://doi.org/10.1175/1520-0442(1999)012<2515:lttiep>2.0.co;2


Kunkel, K. E., Easterling, D. R., Redmond, K., & Hubbard, K. (2003). Temporal variations of extreme precipitation events in the United States: 1895–2000. Geophysical Research Letters, 30(17), 5-1–5-4. https://doi.org/10.1029/2003gl018052


Lapin, M., Faško, P., Melo, M., Šťastný, P., & Tomlain, J. (2002). Klimatické oblasti [Climatic regions]. In Atlas krajiny Slovenskej republiky. Bratislava: MŽP SR.


Libiseller, C., & Grimvall, A. (2002). Performance of partial Mann-Kendall tests for trend detection in the presence of covariates. Environmetrics, 13(1), 71–84. https://doi.org/10.1002/env.507


Malhi, G. S., Kaur, M., & Kaushik, P. (2021). Impact of climate change on agriculture and its mitigation strategies: A review. Sustainability, 13(3), 1318. https://doi.org/10.3390/su13031318


Mann, H. B. (1945). Nonparametric tests against trend. Econometrica, 13(3), 245. https://doi.org/10.2307/1907187


Markovič, L., Pecho, J., & Faško, P. (2020). Zmeny v skupenskom zastúpení atmosférických zrážok v zime na území Slovenska [Changes in phase of precipitation during winter in Slovakia]. Meteorologické zprávy, 73.


Mukherjee, S., Aadhar, S., Stone, D., & Mishra, V. (2018). Increase in extreme precipitation events under anthropogenic warming in India. Weather and Climate Extremes, 20, 45–53. https://doi.org/10.1016/j.wace.2018.03.005


Najvyšší kontrolný úrad (2021). Správa o výsledku kontroly Pripravenosť Slovenskej republiky na dopady sucha [Report on the result of the inspection Preparedness of the Slovak Republic for the effects of drought].


Önöz, B., & Bayazit, M. (2012). Block bootstrap for Mann-Kendall trend test of serially dependent data. Hydrological Processes, 26(23), 3552–3560. https://doi.org/10.1002/hyp.8438


Riedel, T., & Weber, T. K. (2020). Review: The influence of global change on Europe’s water cycle and groundwater recharge. Hydrogeology Journal, 28(6), 1939–1959. https://doi.org/10.1007/s10040-020-02165-3


Šefčík, P., Maglay, J., Fordinál, K., & Moravcová, M. (2019). Pôdy Podunajskej roviny a ich vývoj v kvartéri [Soils of the Danube Plain and their development in the Post-Tertiary]. Otevřený kongres české geologické společnosti a Slovenskej geologickej spoločnosti, Beroun. 67.


Sen, P. K. (1968). Estimates of the regression coefficient based on Kendall‘s tau. Journal of the American Statistical Association, 63(324), 1379–1389. https://doi.org/10.1080/01621459.1968.10480934


Slovenský hydrometeorologický ústav (2022). Klimatické pomery Slovenskej republiky [Climatic conditions of the Slovak Republic]. https://www.shmu.sk/sk/?page=1064


Sobocká, J. (2005). Klimatická zmena a jej možné dopady na pôdny fond Slovenska [Climate change and its possible impacts on the soil of Slovakia].


Šurda, P., Vitková, J., & Rončák, P. (2020). Regional drought assessment based on the meteorological indices. Bulletin of the Georgian National Academy of Sciences, 14(2), 9–84.


Šútor, J., Šurda, P., & Štekauerová, V. (2011). Vplyv bezzrážkových období na dynamiku zásob vody v zone aerácie pôdy [Effect of the Time Periods Without Precipitation on Water Storage Dynamics in the Aeration Zone of the Soil]. Acta Hydrologica Slovaca, 12, (1), 22–28.


Vido, J., & Nalevanková, P. (2020). Drought in the upper Hron region (Slovakia) between the years 1984–2014. Water, 12(10), 2887. https://doi.org/10.3390/w12102887


Wang, Y. (2005). Observed trends in extreme precipitation events in China during 1961–2001 and the associated changes in large-scale circulation. Geophysical Research Letters, 32(9). https://doi.org/10.1029/2005gl022574


World Meteorological Organization. (1992). International Meteorological Vocabulary.


Zeleňáková, M., & Fendeková, M. (2018). Climate Change Impacts on Water Resources. In Negm, A. M., & Zeleňáková, M. (2018). Water resources in Slovakia: Part II: Climate change, drought and floods. https://doi.org/10.1007/698_2018_268


Zeleňáková, M., Vido, J., Portela, M. M., Purcz, P. Blištán, P., Hlavatá, H., & Hluštík, P. (2017). Precipitation Trends over Slovakia in the Period 1981–2013. Water, 9(12), 922. https://doi.org/10.3390/w9120922