Genotype – genotype × environment (GGE) biplot analysis of winged bean for grain yield

PDF

Authors: Solomon Tayo Akinyosoye, Opeyemi Adeola Agbeleye, Johnson Adedayo Adetumbi, Paul Chiedozie Ukachukwu and Oluwafemi Daniel Amusa

Volume/Issue: Volume 26: Issue 1

Published online: 23 May 2023

Pages: 53 - 63

DOI: https://doi.org/10.2478/ahr-2023-0009


Abstract

The winged bean is an underutilized legume that is adapted to the tropics. It has good prospects as a significant multi-purposefood crop including human nutrition, cattle feed, and environmental protection. However, little research attention has beengiven to the crop to address the identified constraints, especially low yield in Nigeria. To improve its yield potential, GGE biplotanalysis was used to identify high-yielding and stable winged bean genotypes, previously collected from the continent of Asia,and Nigeria for yield improvement. Twenty winged bean genotypes were being evaluated under the rainfed condition at threelocations (Ibadan, Ile-Ife, and Kishi) for two years, comprising six environments. The obtained results showed that the seed yield(SY) ranged from 805.61 kg.ha-1 (Ibadan) to 1,096.35 kg.ha-1 (Kishi), with SY of 988.42 kg.ha-1 across the locations. The wingedbean reached its first flowering, 50% flowering, 50% podding, and 70% physiological maturity in 74, 80, 93, and 137 days afterbeing planted, respectively across the locations. The GGE biplot analysis showed that the principal component (PC) axes captured71.5% of the total variation, where PC1 and PC2 were responsible for 36.6% and 34.9%, respectively. Genotype, environment,and their interaction had a significant effect on SY. Environments IB20 and IF20 were adjudged the most ideal environments todiscriminate between the genotypes. Genotype Tpt-12 was identified as high-yielding and stable. Tpt-12 would be recommendedfor commercial farming in southwestern Nigeria. The selected high-yielding winged bean genotypes are hereby recommended aspromising parental lines for the grain yield improvement in the winged bean improvement programs.


Keywords: winged bean, GGE biplot analysis, genotype x environment interaction, agronomic traits, agro-ecologies of Nigeria

PDF

References

Adegboyega, T. T., Abberton, M. T., AbdelGadir, A. H., Dianda, M., Maziya-Dixon, B., Oyatomi, O. A., Ofodile, S., & Babalola, O. O. (2019). Nutrient and Antinutrient Composition of Winged Bean (Psophocarpus tetragonolobus (L.) DC.) Seeds and Tubers. Journal of Food Quality, 2019, 1–8. https://doi.org/10.1155/2019/3075208


Adegboyega, T. T., ABBERTON, M. T., ABDELGADIR, A. H., MAHAMADI, D., OLANIYI, O. A., OFODILE, S., & BABALOLA, O. O. (2021). Variation in winged bean (Psophocarpus tetragonolobus) growth parameters, seed yield, nodulation, and nitrogen fixation. Asian Journal of Agriculture, 5(2), 61–71. https://doi.org/10.13057/asianjagric/g050203


Agbeleye, O. A., Akinyosoye, S. T., & Adetumbi, J. A. (2020). Correlation, path coefficient and principal component analysis of yield components in mung bean [Vigna radiata (L.) Wilcezk] accessions. Tropical Agriculture, 97(4), 212–218.


Akinyosoye, S. T. (2022). Genotype–genotype× environment (GGE) biplot analysis of extra-early maturing quality protein maize hybrids for grain yield. Journal of Crop Science and Biotechnology, 25(5), 599–610. https://doi.org/10.1007/s12892-022-00154-4


Akinyosoye, S. T., Agbeleye, O. A., Adetumbi, J. A., & Ukachukwu, P. C. (2021). Selection for earliness and seed yield in Mung bean accessions using REML/BLUP. Pesquisa Agropecuária Brasileira, 56.


Alalade, J. A., Akinlade, J. A., Aderinola, O. A., Fajemisin, A. N., Muraina, T. O., & Amoo, T. A. (2016). Proximate, mineral and anti-nutrient contents in Psophocarpus tetragonolobus (L) DC.(winged bean) leaves. British Journal of Pharmaceutical Research, 10(2), 1–7. https://doi:10.9734/BJPR/2016/22087


Amoo, I. A., Adebayo, O. T., & Oyeleye, A. O. (2006). Chemical evaluation of winged beans (Psophocarpus tetragonolobus), Pitanga cherries (Eugenia uniflora) and orchid fruit (Orchid fruit myristica). African Journal of Food, Agriculture, Nutrition and Development, 6(2). https://doi:10.4314/ajfand.v6i2.71734


Bassal, H., Merah, O., Ali, A. M., Hijazi, A., & El Omar, F. (2020). Psophocarpus tetragonolobus: An underused species with multiple potential uses. Plants, 9(12), 1730. https://doi.org/10.3390/plants9121730


Baye, T. M., Abebe, T., & Wilke, R. A. (2011). Genotype–environment interactions and their translational implications. Personalized medicine, 8(1), 59–70. https://doi:10.2217/pme.10.75


Dehghani, H., Sabaghnia, N., & Moghaddam, M. (2009). Interpretation of genotype-by-environment interaction for late maize hybrids’ grain yield using a biplot method. Turkish Journal of Agriculture and Forestry, 33(2), 139–148.


Ebadi, A., Sabaghpour, S., Dehghani, H., & Kamrani, M. 2010. Screening of superior chickpea accessions for various environments of Iran using genotype plus genotype × environment (GGE) biplot analysis. Journal of Plant Breeding and Crop Science, (2), 286–292.


Ewool, M. B. (2004). Estimation of genetic improvement of maize in Ghana under three levels of nitrogen application. M.Sc Thesis. KNUST, Kumasi, Ghana.


Karimizadeh, R., Mohammadi, M., Sabaghni, N., Mahmoodi, A. A., Roustami, B., Seyyedi, F., & Akbari, F. (2013). GGE biplot analysis of yield stability in multi-environment trials of lentil genotypes under rainfed condition. Notulae Scientia Biologicae, 5(2), 256 262. https://doi.org/10.1155/2021/2166022


Kaya, Y., Akçura, M., & Taner, S. (2006). GGE-biplot analysis of multi-environment yield trials in bread wheat. Turkish Journal of Agriculture and Forestry, 30(5), 325–337. https://journals.tubitak.gov.tr/agriculture/vol30/iss5/3


Khalili, R. M. A., Shafekh, S. E., Norhayati, A. H., Fatahudin, I. M., Rahimah, R., Norkamaliah, H., & Azimah, A. N. (2013). Total phenolic content and in vitro antioxidant activity of winged bean (Psophocarpus tetragonolobus). Pakistan Journal of Nutrition, 12(5), 416–422. https://doi:10.3923/pjn.2013.416.422


Koshy, E. P., Alex, B. K., & John, P. (2013). Clonal fidelity studies on regenerants of Psophocarpus tetragonolobus (L.) DC. using RAPD markers. The Bioscan, 8(3), 763–766.


Mohanty, C. S., Verma, S., Singh, V., Khan, S., Gaur, P., Gupta, P., ... & Rana, T. S. (2013). Characterization of winged bean (Psophocarpus tetragonolobus (L.) DC.) based on molecular, chemical and physiological parameters. https://doi:10.4236/ajmb.2013.34025


Mohanty, C. S., Pradhan, R. C., Singh, V., Singh, N., Pattanayak, R., Prakash, O., ... & Rout, P. K. (2015). Physicochemical analysis of Psophocarpus tetragonolobus (L.) DC seeds with fatty acids and total lipids compositions. Journal of food science and technology, 52, 3660–3670. https://doi:10.1007/s13197-014-1436-1


Olanrewaju, O. S., Oyatomi, O., Babalola, O. O., & Abberton, M. (2021). GGE Biplot analysis of genotype× environment interaction and yield stability in bambara groundnut. Agronomy, 11(9), 1839. https://doi.org/10.3390/agronomy11091839


Oyekunle, M., Haruna, A. B., & Badu-Apraku, A. B. (2017). Assessment of early-maturing maize hybrids and testing sites using GGE biplot analysis,” Crop Science57(6), 2942–2950. https://doi.org/10.2135/cropsci2016.12.1014


Perry, L. M., & Metzger, J. (1980). Medicinal plants of east and southeast Asia: attributed properties and uses. MIT Press, Cambridge. https://doi.org/10.1007/BF02858311


Popoola, J., Ojuederie, O., Omonhinmin, C., & Adegbite, A. (2019). Neglected and Underutilized Legume Crops: Improvement and Future Prospects. In: Shah, F., Khan, Z., Iqbal, A., Turan, M., Olgun, M., ed. Recent Advances in Grain Crops Research [Internet]. London: Available from: https://www.intechopen.com/chapters/68218 https://doi:10.5772/intechopen.87069


Rahmatollah, K., Mohammadi, M., Sabaghni, N., Mahmoodi, A., Roustami, B., Seyyedi, F., & Akbari, F. 2013. GGE Biplot Analysis of Yield Stability in Multi-environment Trials of Lentil Genotypes under Rainfed Condition. Not Sci Biol, 5(2), 256–262.


Segherloo, A. E., Sabaghpour, S. Y., Dehghani, H., & Kamrani, M. (2010). Screening of superior chickpea genotypes for various environments of Iran using genotype plus genotype × environment (GGE) biplot analysis. Journal of Plant Breeding and Crop Science, 2(9), 286–292. http://eprints.icrisat.ac.in/id/eprint/688


Sharma, S. P., Leskovar, D. I., Crosby, K. M., & Ibrahim, A. M. H. (2020). GGE biplot analysis of genotype-by- environment interactions for melon fruit yield and quality traits. HortScience, 55(4), 533–542. https://doi.org/10.21273/HORTSCI14760-19


Sonneveld, B. G. J. S. (2005). Compilation of a soil map for Nigeria: a nation-wide soil resource and land form inventory. Nigerian Journal of Soil and Environmental Research, 6, 71–84. https://doi.org/10.4314/niser.v6i1.28397


Sousa, M. B. E., Damasceno-Silva, K. J., Rocha, M. D. M., Menezes Júnior, J. Â. N. D., & Lima, L. R. L. (2018). Genotype by environment interaction in cowpea lines using GGE biplot method. Revista Caatinga, 31, 64–71. https://doi.org/10.1590/1983-21252018v31n108rc


Sriwichai, S., Monkham, T., Sanitchon, J., Jogloy, S., & Chankaew, S. (2021). Dual-purpose of the winged bean (Psophocarpus tetragonolobus (L.) DC.), the neglected Tropical legume, based on pod and tuber yields. Plants, 10(8), 1746–1759. https://doi.org/10.3390/plants10081746


Tanzi, A. S., Eagleton, G. E., Ho, W. K., Wong, Q. N., Mayes, S., & Massawe, F. (2019). Winged bean (Psophocarpus tetragonolobus (L.) DC.) for food and nutritional security: synthesis of past research and future direction. Planta, 250, 911–931. https://doi.org/10.1007/s00425-019-03141-2


Tiwari, J. K., Kanwar, R. R., Yadav, R. K., & Singh, A. K. (2022). Yield stability analysis in an underutilized legume ‘winged bean’ (Psophocarpus tetragonolobus L.). Legume Research-An International Journal, 45(2), 209–214. http://dx.doi.org/10.18805/LR-4333


Vatanparast, M., Shetty, P., Chopra, R., Doyle, J. J., Sathyanarayana, N., & Egan, A. N. (2016). Transcriptome sequencing and marker development in winged bean (Psophocarpus tetragonolobus; Leguminosae). Scientific reports, 6(1), 1–14. https://doi.org/10.1038/srep29070


Yan, W. (2001). GGEbiplot - A Windows application for graphical analysis of multienvironment trial data and other types of two-way data. Agronomy journal, 93(5), 1111–1118. https://doi.org/10.2134/agronj2001.9351111x


Yan, W., & Kang, M. S. (2003). GGE biplot analysis: a graphical tool for breeders, geneticists, and agronomists. CRC Press, Boca Raton


Yan, W., & Tinker, N. A. (2006). Biplot analysis of multienvironment trial data: Principles and applications. Can. J. Plant Sci., 86, 623–645.


Yan, W., & Tinker, N. A. (2005). An integrated biplot analysis system for displaying, interpreting, and exploring genotype× environment interaction. Crop Science, 45(3), 1004–1016. https://doi:10.2135/cropsci2004.0076


Yan, W., Hunt, L. A., Sheng, Q., & Szlavnics, Z. (2000). Cultivar evaluation and mega-environment investigation based on the GGE biplot. Crop science, 40(3), 597–605. https://doi.org/10.2135/cropsci2000.403597x


Yan, W., Kang, M. S., Ma, B., Woods, S., & Cornelius, P. L. (2007). GGE biplot vs. AMMI analysis of genotype-by-environment data. Crop science, 47(2), 643–653. https://doi.org/10.2135/cropsci2006.06.0374


Yang, J., & Tan, H. 2011. Winged Bean Milk. International Conference on New Technology of Agricultural Engineering, Zibo. (pp. 814–817).