Statistical Analysis and Trend Detection of the Hydrological Extremes in the Váh River at Liptovský Mikuláš

PDF

Authors: Veronika Bačová Mitková, Dana Halmová

Volume/Issue: Volume 24: Issue s1: Special Issue

Published online: 21 May 2021

Pages: 80-89

DOI: https://doi.org/10.2478/ahr-2021-0013


Abstract

Natural climate fluctuation, as well as expected climate change, brings additional water regimes in the flow of a number of serious issues and uncertainties. The upper parts of the river basins are suitable for studying the effect of potential climate change or increased air temperature on drainage conditions in the basin. The Váh River is the biggest left-side Danube River tributary and the second biggest river in Slovakia. Gauging station Váh – Liptovský Mikuláš is the final profile above the water reservoir Liptovská Mara, one of the largest reservoirs in Slovakia. The contribution deals with the trend analysis of the extreme flows regime and the waves volume belongs to the annual maximum flow at gauging station Váh – Liptovský Mikuláš in a selected time period (1931–2015). Consequently, the trend analyses of precipitation depth and air temperature have been made at three selected meteorological stations located in the upper part of the Váh River basin. We have used the Mann-Kendall nonparametric test, which is one of the most widely used nonparametric tests to detect significant trends in a time series.


Keywords: trend analysis, MANN-KENDALL, annual maximum flow, volume of the wave, the Váh River

PDF

References

Bičárová, S., Holko, L. (2013). Changes of characteristics of daily precipitation and runoff in the High Tatra Mountains, Slovakia over the last fifty years. Contributions to Geophysics and Geodesy, 43(2), 157–177.


Burn, D. H., Hag Elmur, M. A. (2002). Detection of hydrologic trends and variability. J. of Hydrology, 255, 107–122.


Demeterová, B., Škoda, P. (2009). Low flow in selected streams of Slovakia. J. Hydrol. Hydromech., 57(1), 55–69.


Falarz, M. (2004). Variability and trends in duration and depth of snow cover in Poland in the 20th century. International Journal of Climatology, 24, 1713–1727.


Franke, J., Goldberg, V., Eichelmann, U., Freydank, E., Bernhofer, C. (2004). Statistical analysis of regional climate trends in Saxony, Germany. Climate Research, 27, 145–150.


Fu, G., Chen, S., Liu, C., Shepard, D. (2004). Hydro-climatic trends of the Yellow River basin for the last 50 years. Climatic Change, 65, 149–178.


Gilbert, R.O. (1987). Statistical Methods for Environmental Pollution Monitoring. New York: John Wiley & Sons, Inc.


Haan, C.T. (1977). Statistical Methods in Hydrology. The Iowa State University Press (378). www.scribd.com/doc/265472254/Statistical-Methods-in-Hydrology-Charles-T-HAAN


Hamed, K. H. (2008). Trend detection in hydrologic data: The Mann-Kendall trend test under the scaling hypothesis. Journal of Hydrology, 349(3–4), 350–363.


Hamed, K. H., Rao, A.R. (1998). A Modified Mann-Kendall Trend Test for Autocorrelated Data. Journal of Hydrology, 204(1), 182–196. DOI: 10.1016/S0022-1694(97)00125-X


Helsel, D.R., Frans, L.M. (2006). Regional Kendall Test for Trend. Environmental Science and Technology, 40, 13.


Hirsch, R.M., Slack, J.R. (1984). A nonparametric trend test for seasonal data with serial dependence. Water Resour. Res., 20(6), 727–732.


Hirsch, R.M., Slack, J.R., Smith, R.A. (1982). Techniques of trend analysis for monthly water quality data. Water Resour. Res., 18(1), 107–121.


Hladný, J., Pacl, J. (1974). Analysis of the precipitation-runoff relationships in mountain watersheds. J. Hydrol. Hydromech., 22(4), 346–356.


Hlubocký, B., Dulovič, L., Matuška, M., Turčan, J. (1980). Hydrological regime of Bela representative basin. Final report No. 2231. Bratislava: SHMI (97 p.) (in Slovak).


Holko, L., Kostka, Z. (2006). Hydrological research in a high-mountain catchment of the Jalovecky creek. J. Hydrol. Hydromech., 54(2), 192–206.


Holko, L., Parajka, J., Majerčaková, O., Faško, P. (2001). Hydrological balance of selected catchments in the Tatra Mountains region in hydrological years 1989 – 1998. J. Hydrol. Hydromech., 49(3–4), 200–222.


Holko, L., Sleziak, P., Danko, M., Bičárová, S., Pociask-Karteczka, J. (2020). Analysis of changes in hydrological cycle of a pristine mountain catchment. 1. Water balance components and snow cover. Journal of Hydrology and Hydromechanics, 68(2), 180–191.


IPCC Climate Change (2007). The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge. Cambridge, New York: University Press (996 p.).


Jeneiová, K., Kohnová, S., Sabo, M. (2014). Detecting Trends in the Annual Maximum Discharges in the Vah River Basin, Slovakia. Acta Silv. Lign. Hung., 10(2), 133–144. DOI: 10.2478/aslh-2014-0010.


Konček, M. (1974). Klíma Tatier (855 p). Bratislava: Veda (in Slovak).


Lettenmaier, D. P, Wood, E. F., Wallis, J. R. (1994). Hydro-climatological trends in the continental United States, 1948–1988. J. of Climate, 7, 586–607.


Łupikasza, E., Niedźwiedź, T., Pinskwar, I., Ruiz-Villanueva, V., Kundzewicz, Z. W. (2016). Observed Changes in Air Temperature and Precipitation and Relationship between them, in the Upper Vistula Basin. In Z.W. Kundzewicz, M. Stoffel, T. Niedźwiedź, B. Wyżga (eds.). The Upper Flood Risk in the Upper Vistula Basin, GeoPlanet: Earth and Planetary Sciences, Springer (pp. 155–188).


Majerčáková, O., Škoda, P., Danáčová, Z. (2007). Development of selected hydrological and rainfall characteristics for the periods 1961–2000 and 2001–2006 in the High Tatras. Meteorological journal, 10(4), 205–210.


Molnár, L., Miklánek, P., Trizna, M. (1991). Experimental research of water balance components in the mountainous watershed. J. Hydrol. Hydromech., 39(5–6), 448–456.


Molnár, L., Pacl, J. (1999). The hydrological characteristics of the High Tatra region. Workshop on Hydrology of Mountainous areas. IH SAS (28 p.).


Niedźwiedź, T., Łupikasza, E., Pińskwar, I., Kundzewicz, Z. W., Stoffel, M., Małarzewski, Ł. (2014). Variability of high rainfalls and related synoptic situations causing heavy floods at the northern foothills of the Tatra Mountains. Theor Appl. Climatology. DOI: 10.1007/s00704-014-1108-0


Onoz, B., Bayazit, M. (2003). The power of statistical tests for trend detection. Turkish J. Eng. Environ. Sci., 27, 247–251.


Pacl, J. (1973). Hydrology of the Tatra National Park. Proc. of the works of the Tatra National Park, 15, 181–238.


Pacl, J. (1994). Tatra National Park – Water. Tatranska Lomnica: Publ. TANAP? (pp. 66–78).


Parajka, J. (2000). Estimation of the average basin precipitation for mountain basins in the Western Tatra mountains. ERB2000-Monitoring and modelling catchment water quantity and quality, Belgium: Ghent (pp. 27–29).


Pekarová, P. (2003). Identification of long-term trends and fluctuations of hydrological time series (Part II, Results). Journal of Hydrology and Hydromechanics, 51(2), 97–108.


Pekárová, P., Szolgay, J. (eds.). 2005. Scenarios of changes in selected hydrosphere and biosphere components in the Hrona and Vah catchment areas due to climate change. Bratislava: Veda (496 p.) (in Slovak).


Pekárová, P., Pekár, J., Miklánek, P. (2019). Effect of water on bimodality of air temperature distribution functions and changes in T-year air temperature values in Hurbanovo. Acta Hydrologica Slovaca, 20(1), 53–62.


Pribullová, A., Chmelík, M., Pecho, J. (2011). Long-term changes in air temperature in Tatras mountains. The Environment, revue for theory and care of the environment, 45(2), 71–77 (in Slovak).


Pribullová A., Chmelík M., Pecho J. (2013). Air Temperature Variability in the High Tatra Mountains. In J. Kozak, K. Ostapowicz, A. Bytnerowicz, B. Wyżga (eds.). The Carpathians: Integrating Nature and Society Towards Sustainability, Environmental Science and Engineering, Environmental Science, Berlin–Heidelberg: Springer-Verlag (pp. 111–130).


Schoner, W., Auer, I., Bohm, R. (2009). Long term trends of snow depth at Sonnblick (Austrian Alps) and its relation to climate change. Hydrological Processes, 23, 1052–1063.


Sen, P. K. (1968). Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc., 63, 1379–1389.


Shahid, S. (2011). Trends in extreme rainfall events of Bangladesh. Theoretical and Applied Climatology, 104, 489–499.


Sonali, P., Nagesh Kumar, D. (2013). Review of trend detection methods and their application to detect temperature changes in India. Journal of Hydrology 476, 212–227.


Xiong, L., Shenglian, G. (2004). Trend test and change-point detection for the annual discharge series of the Yangtze River at the Yichang hydrological station. Hydrol. Sci. J., 49(1), 99–112.


Yue, S., Pilon, P., Cavadias, G. (2002). Power of Mann-Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series. J. of Hydrology, 259, 254–271.


Yue, S., Pilon, P., Phinney, B. (2003). Canadian streamflow trend detection: impacts of serial and cross-correlation. Hydrol. Sci. J., 48(1), 51–64.


Zhang, X., Harvey, K. D., Hogg, W. D., Yuzyk, T. R. (2001). Trends in Canadian streamflow. Water Resour. Res., 37(4), 987–998.