Long-term effect of crops and fertilization on soil eco-chemical state

PDF

Authors: Jerzy Jonczak

Volume/Issue: Volume 24: Issue 1

Published online: 21 May 2021

Pages: 21-27

DOI: https://doi.org/10.2478/ahr-2021-0021


Abstract

The study on long-term effects of various crops and fertilization practices on soil eco-chemical state was performed in the complex of Planosols at the Warsaw University of Life Sciences – SGGW experimental station in Skierniewice. The study covered three experiments – Ex-1 (established in 1923; no organic fertilization, cereals as a crop), Ex-2 (established in 1992; farmyard manure application every 4 years, cereals as a crop) and Ex-3 (established in 1975; no organic fertilization, blueberries as a crop). Additionally, each experiment covered three mineral fertilization options, including no fertilization, NPK and CaNPK. Soil samples were taken from A-horizons in 2017 and analysed using standard procedures. The results demonstrate considerable influence of crops and fertilization practices on soil eco-chemical state. Both mineral and organic fertilizers positively affected sorptive capacity as compared to control and modified ionic composition of soil sorption complex. Lower exchangeable acidity and higher sum of exchangeable basis and base saturation were noted in fertilized soils and cereals as a crop as compared to controls. Under blueberries there was observed strong acidification of the soil, in particular in combination with NPK fertilizers, as evidenced by the highest exchangeable acidity, hydrolytic acidity, and the lowest base saturation. Liming partially neutralized acidifying effect of blueberries. Fertilization and crops also strongly influenced buffering capacity of the soils. Extremely low ability to neutralize acidic ions was noted in unfertilized soils, whereas the highest at plots fertilized with Ca. The highest ability to neutralize alkaline ions was typical for NPK fertilized soils under blueberries.


Keywords: soil pH, soil sorption, buffering capacity, fertilization, soil quality

PDF

References

Bartmiński, P., & Klimowicz, Z. (2008). Właściwości sorpcyjne czarnych ziem Kotliny Sandomierskiej wytworzonych z różnych skał macierzystych. Roczniki Gleboznawcze, 59(3), 7–16.


Bednarek, R., Dziadowiec, H., Pokojska, U., & Prusinkiewicz, Z. (2004). Badania ekologiczno-gleboznawcze. PWN.


Błońska, E., & Januszek, K. (2010). Wpływ składu gatunkowego drzewostanów na aktywność enzymatyczną i właściwości fizykochemiczne gleb leśnych. Roczniki Gleboznawcze, 61(2), 5–14.


Hulugalle, N. R., & Weaver, T. B. (2005). Short-term variations in chemical properties of Vertisols as affected by amounts, carbon/nitrogen ratio, and nutrient concentration of crop residues. Communications in Soil Science and Plant Analysis, 36, 1449–1464. DOI https://doi.org/10.1081/CSS-200058489


Jaworska, H., Kobierski, M., & Dąbkowska-Naskręt, H. (2008). Kationowa pojemność wymienna i zawartość kationów wymiennych w glebach płowych o zróżnicowanym uziarnieniu. Roczniki Gleboznawcze, 59(1), 84–89.


Kang, J., Hesterberg, D., & Osmond, D. L. (2009). Soil organic matter effects on phosphorus sorption: A path analysis. Soil Science Society of America Journal. 73(2), 360–366. DOI https://doi.org/10.2136/sssaj2008.0113


Kowalkowski, A. (2002). Wskaźniki ekochemicznego stanu gleb leśnych zagrożonych przez zakwaszenie. Regionalny Monitoring Środowiska Przyrodniczego, 3, 31–43.


Lieb, A. M., Darrouzet-Nardi, A., & Bowman, W. D. (2011). Nitrogen deposition decreases acid buffering capacity of alpine soils in the southern Rocky Mountains. Geoderma, 164, 220–224. DOI https://doi.org/10.1016/j.geoderma.2011.06.013


Limon-Ortega, A., & Martinez-Cruz, E. (2014). Effects of soil pH on wheat grain yield and quality. Communications in Soil Science and Plant Analysis, 45(5), 581–591. DOI https://doi.org/10.1080/00103624.2013.874018


Malczyk, P., Kobierski, M., Jaworska, H., & Dąbkowska-Naskręt, H. (2008). Zależność między wybranymi właściwościami gleb i pojemnością buforową w glebach uprawnych regionu Pomorza i Kujaw. Roczniki Gleboznawcze, 59(1), 149–154.


Okołowicz, M. (1996). Właściwości sorpcyjne frakcji granulometrycznych wybranych gleb. Roczniki Gleboznawcze, 47(1/2), 33–46.


Orzechowski, M., Smólczyński, S., & Sowiński, P. (2005). Właściwości sorpcyjne gleb aluwialnych Żuław Wiślanych. Roczniki Gleboznawcze, 56(1/2), 119–127.


PTG. (2009). Klasyfikacja uziarnienia gleb i utworów mineralnych – PTG 2008. Roczniki Gleboznawcze, 60(2), 5–17.


Raczuk, J. (2011). Acidity and buffering properties of soils of the Biała Podlaska Commune. Ochrona Środowiska i Zasobów Naturalnych, 49, 186–192.


Rojas, R., Morillo, J., Usero, J., Delgado-Moreno, L., & Gan, J. (2013). Enhancing soil sorption capacity of an agricultural soil by addition of three different organic wastes. Science of the Total Environment (pp. 458–460, 614–623). DOI 10.1016/j. scitotenv.2013.04.032


Šimanský, V., Juriga, M., Jonczak, J., Uzarowicz, Ł., & Stępień, W. (2019). How relationships between soil organic matter parameters and soil structure characteristics are affected by the long-term fertilization of a sandy soil. Geoderma, 342, 75–84. DOI https://doi.org/10.1016/j.geoderma.2019.02.020


Šimanský, V., & Polláková, N. (2014). Soil organic matter and sorption capacity under different soil management practices in a productive vineyard. Archives of Agronomy and Soil Science, 60(8), 1145–1154. DOI https://doi.org/10.1080/03650340.2013.865837


Thompson, M., L., Zhang, H., Kazemi, M., & Sandor, J. A. (1989). Contribution of organic matter to cation exchange capacity and specific surface area of fractionated soil materials. Soil Science, 148, 250–257.


Ulrich, B. (1981). Ökologische Gruppierung von Böden nach ihrem chemischen Bodenzustand. Zeitschrift für Pflanzenernährung und Bodenkunde, 144, 289–305.


Vang, F. L., & Huang, P. M. (2001). Effects of organic matter on the rate of potassium adsorption by soils. Canadian Journal of Soil Science, 81(3), 325–330. DOI https://doi.org/10.4141/S00-069


Walenczak, K., Licznar, S. E., & Licznar, M. (2009). The role of organic matter and colloidal clay in forming of buffer properties of soils of the Szczytnicki Park. Soil Science Annual, 60(2), 102–107.


WRB. (2015). World Reference Base for Soil Resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. FAO.