Using the equation for computing the wind erodible fraction of soils in the conditions of the Czech republic

PDF

Authors: Jana Kozlovsky Dufková, Vít Procházka, Jan Szturc, Tomáš Mašíček

Volume/Issue: Volume 24: Issue 1

Published online: 21 May 2021

Pages: 63-70

DOI: https://doi.org/10.2478/ahr-2021-0025


Abstract

The erodible fraction (EF) of soil (soil aggregates and particles <0.84 mm) is one of the basic factors according to which the susceptibility of soil to wind erosion can be assessed. The standard method for determining the EF content is the use of a rotary sieve. Nevertheless, its availability is limited by its price and the fact that it is not mass-produced and is necessary to build the sieve to order. An alternative method of determining the EF content is to use an equation based on knowledge of the content of sand, silt, clay, organic carbon, and calcium carbonate. However, this equation has only been tested for US conditions. Therefore, the research focuses on the validation of the equation for the conditions of the Czech Republic, specifically in the territory of Southern Moravia. The results show that the equation validated for the USA cannot be used to determine the EF content in soils of the Czech Republic. Using the statistical program Unistat©, a new equation was proposed with correlation coefficient R = 0.8238 which means good applicability of the equation for the local soils at least in the area of Southern Moravia.


Keywords: erodible fraction, main soil unit, particle size distribution, multiple regression analysis

PDF

References

Allison, L. E., & Moodie, C. D. (1965). Carbonate. In A. G. Norman (Ed.), Methods of soil analysis: Part 2 Chemical and microbiological properties (pp. 1379–1396). American Society of Agronomy.


Arthur, E., Schjønning, P., Moldrup, P., Tuller, M., & de Jonge, L. W. (2013). Density and permeability of a loess soil: long-term organic matter effect and the response to compressive stress. Geoderma, 193–194, 236–245.


Borrelli, P., Panagos, P., Ballabio, C., Lugato, E., Weynants, M., & Montanarella, L. (2016). Towards a pan-European assessment of land susceptibility to wind erosion. Land Degrad. Dev., 27, 1093–1105.


Bullock, M. S., Larney, F. J., Izaurralde, R. C., & Feng, Y. (2001). Overwinter changes in wind erodibility of clay loam soils in southern Alberta. Soil Science Society of America Journal, 65, 423–430.


Chandler, D. G., Saxton, K. E., & Busacca, A. J. (2005). Predicting wind erodibility of loessial soils in the Pacific Northwest by particle sizing. Arid Land Research and Management, 19(1), 13–27.


Chatterjee, S., Hadi, A. S., & Price, B. (2000). Regression analysis by example. John Wiley and Sons.


Chepil, W. S. (1942). Measurement of wind erosiveness of soils by dry sieving procedures. Canadian Journal of Agricultural Sciences, 23, 154–160.


Chepil, W. S. (1950). Properties of soil which influence wind erosion: II. Dry agregate structure as an index of erodibility. Soil Science, 69, 403–414.


Chepil, W. S. (1952). Improved rotary sieve for measuring state and stability of dry soil structure. Soil Science Society of America Proceedings, 16(2), 113–117.


Chepil, W. S. (1954). Factors that influence clod structure and erodibility of soil by wind III. Calcium carbonate and decomposed organic matter. Soil Science, 77, 473–480.


Chepil, W. S. (1962). A compact rotary sieve and the importance of dry sieving in physical soil analysis. Soil Science Society of America Journal, 26(1), 4–6.


Chepil, W. S., & Basil, F. (1943). A rotary sieve method for determining the size distribution of soil clods. Soil Science, 56(2), 95–100.


Colazo, J. C., & Buschiazzo, D. E. (2010). Soil dry aggregate stability and wind erodible fraction in a semiarid environment of Argentina. Geoderma, 159, 228–236.


Diaz-Zorita, M., Grove, J. H., & Perfect, E. (2007). Sieving duration and sieve loading impacts on dry soil fragment size distributions. Soil Tillage Res., 94, 15–20.


Du, H., Xue, X., Wang, T., & Deng, X. (2015). Assessment of wind-erosion risk in the watershed of the Ningxia-Inner Mongolia Reach of the Yellow River, northern China. Aeolian Res., 17, 193–204.


Durner, W., Iden, S. C., & von Unold, G. (2017). The integral suspension pressure method (ISP) for precise particle-size analysis by gravitational sedimentation. Water Resources Research, 53(1), 33–48. https://doi.org/10.1002/2016WR019830


Fryrear, D. W., Krammes, C. A., Williamson, D. L., & Zobeck, T. M. (1994). Computing the wind erodible fraction of soils. Journal of Soil and Water Conservation, 49(2), 183–188.


Guo, Z., Chang, Ch., Wang, R., & Li, R. (2017). Comparison of different methods to determine wind-erodible fraction of soil with rock fragments under different tillage/management. Soil & Tillage Research, 168, 42–49. https://doi.org/10.1016/j.still.2016.12.008


Kavdir, Y., Özcan, H., Ekinci, H., & Yigini, Y. (2004). The influence of clay content, organic carbon, and land use types on soil aggregate stability and tensile strength. Turkish Journal of Agriculture, 28, 155–162.


Kemper, W. D., & Rosenau, R. C. (1986). Aggregate stability and size distribution. In A. Klute (Ed.), Methods of soil analysis: Part I. Physical and mineralogical methods (2nd ed., pp. 425–442). American Society of Agronomy.


Kettler, T. A., Doran, J. W., & Gilbert, T. L. (2001). Simplified method for soil particle-size determination to accompany soil-quality analyses. Soil Science Society of America Journal, 65, 849–852.


Kozlovsky Dufková, J. (2010). Laboratory analyses of overwinter processes influence on wind erosion. Meteorological Journal, 13(2–3), 63–67.


Lackóová, L. (2016). Mapovanie zmien zrnitostných frakcií piesočnatých pôd vplyvom veternej erózie v krajine [Habilitation work]. Slovak University of Agriculture in Nitra.


Larney, F. J. (2008). Dry-aggregate size distribution. In M. R. Carter & E. G. Gregorich (Eds.), Soil sampling and methods of analysis (pp. 821–832). Taylor & Francis Group.


Lehrsch, G. A., Sojka, R. E., Carter, D. L., & Jolley, P. M. (1991). Freezing effects on aggregate stability affected by texture, mineralogy, and organic matter. Soil Science Society of America Journal, 55, 1401–1406.


Lehrsch, G. A., Sojka, R. E., & Jolley, P. M. (1993). Freezing effects on aggregate stability of soils amended with lime and gypsum. Catena, 24, 115–127.


López, M. V., De Dios Herrero, J. M., Hevia, G. G., Gracia, R., & Buschiazzo, D. E. (2007). Determination of the wind-erodible fraction of soils using different methodologies. Geoderma, 139, 407–411.


López, M. V., Gracia, R., & Arrue, J. L. (2001). An evaluation of wind erosion hazard in fallow lands of semiarid Aragon (NE Spain). Journal of Soil and Water Conservation, 56, 212–219.


Lyles, L., Dickerson. J. D., & Disrud, L. A. (1970). Modified rotary sieve for improved accuracy. Soil Science, 109(3), 207–210.


Marquez, C. O., Garcia, V. J., Cambardella, C. A., Schultz, R. C., & Isenhart, T. M. (2004). Aggregate-size stability distribution and soil stability. Soil Science Society of America Journal, 68(3), 725–735.


Mckenzie, N., Coughlan, K., & Creswell, H. (2002). Soil physical measurement and interpretation for land evaluation. CSIRO Publishing.


METERGROUP (2020, December 5). Automated particle size analysis PARIO©. https://www.metergroup.com/environment/products/pario/


Paetz, A., & Wilke, B. M. (2005). Soil sampling and storage. In R. Margesin, & F. Schinner (Eds.), Manual for soil analysis: Monitoring and assessing soil bioremediation (pp. 1–46). Springer-Verlag.


Pansu, M., Gautheyrou, J., & Loyer, J. Y. (2001). Soil analysis: Sampling, instrumentation and quality control. A. A. Balkema Publishers.


Pasák, V. (1970). Wind erosion on soils. Research Institute for Soil and Water Conservation.


RISWC. (2020, December 5). Geoportál SOWAC GIS. https://geoportal.vumop.cz/


Saygin, S. D., Cornelis, W. M., Erpula, G., & Gabriels, D. (2012). Comparison of different aggregate stability approaches for loamy sand soils. Applied Soil Ecology, 54, 1–6.


Šimanský, V., Bajčan, D., & Ducsay, L. (2013). The effect of organic matter on aggregation under different soil management practices in a vineyard in an extremely humid year. Catena, 101, 108–113.


Skidmore, E. L., & Layton, J. B. (1992). Dry soil aggregate stability as influenced by selected soil properties. Soil Science Society of America Journal, 56(2), 557–561.


Skidmore, E. L. (1994). Wind erosion. In R. Lal (Ed.), Soil erosion research methods (pp. 265–294). CRC Press.


Tatarko, J. (2001). Soil aggregation and wind erosion: processes and measurements. Annals of Arid Zone, 40(3), 251–263.


Toogood, J. A. (1978). Relation of aggregate stability to properties of Alberta soils. In W. W. Emerson, R. D. Bond, & A. R. Dexter (Eds.), Modification of soil structure (pp. 211–215). Wiley.


Visser, S. M., Sterk, G., & Karssenberg, D. (2005). Wind erosion modelling in a Sahelian environment. Environ. Modell. Software, 20, 69–84.


Walkley, A., & Black, T.A. (1934). An examination of the Degtjareff methods for determining of soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci., 37, 29–38.


Webb, N. P., & Strong, C. L. (2011). Soil erodibility dynamics and its representation for wind erosion and dust emission models. Aeolian Res., 3, 165–179.


Woodruff, N. P., & Siddoway, F. H. (1965). A wind erosion equation. Soil Science, 29(5), 602–608.


Zachar, D. (1982). Soil Erosion. Elsevier Science.


Zobeck, T. M., Popham, T. W., Skidmore, E. L., Lamb, J. A., Merill, S. D., Lindstrom, M. J., Mokma, D. L., & Yoder, R. E. (2003). Aggregate-mean diameter and wind-erodible soil predictions using dry aggregate-size distribution. Soil Science Society of America Journal, 67, 425–436.