Antioxidant capacity of wild-growing bilberry, elderberry, and strawberry fruits


Authors: Radenka Kolarov, Marijana Peić Tukuljac, Aliaksandr Kolbas, Natalia Kolbas, Goran Barać, Vladislav Ognjanov, Mirjana Ljubojević and Dejan Prvulović

Volume/Issue: Volume 24: Issue 2

Published online: 02 Dec 2021

Pages: 119 - 126



Chemical properties (L-ascorbic acid and total sugars content, pH, titratable acidity, and dry solid content), phenolic compounds (total phenolics, tannins, flavonoids, anthocyanins, and flavan-3-ols) and antioxidant capacity were measured in ripe fruits of wild-growing strawberry, bilberry, and elderberry from eastern Serbia. All three selected fruits are rich sources of nutraceuticals: vitamin C, sugars, and different classes of phenolic compounds and their extracts expressed high antioxidant activity. Elderberry fruits possess highest concentration of all measured biomolecules.

Keywords: antioxidant activity, berry, fruits, phenolic compounds



Al-Ani, M., Opara, L. U., Al-Bahri, D. & Al-Rahbi, N. (2007). Spectrophotometric quantification of ascorbic acid contents of fruit and vegetables using 2,4-dinitrophenylhydrazine method. Journal of Food, Agriculture and Environment, 5(3–4), 165–168.

BeMiller, J. N. (2010). Carbohydrate analysis. In S. S. Nielsen (Ed.) Food Analysis. 4th edition (pp. 147–177). Springer.

Bernal, L. J., Melo, L. A. & Moreno, C. D. (2014). Evaluation of the antioxidant properties and aromatic profile during maturation of the blackberry (Rubus glaucus Benth) and the bilberry (Vaccinium meridionale Swartz). Revista Facultad National de Agronomia Medellin, 67(1), 7209–7218.

Bradley, R. L. Jr. (2010). Moisture and total solids analysis. In S. S. Nielsen (Ed.) Food Analysis. 4th edition (pp. 85–104). Springer.

Bunea, A., Rugină, D. O., Pintea. A. M., Sconţa, Z., Bunea, C. I. & Socaciu, C. (2011). Comparative polyphenolic content and antioxidant activities of some wild and cultivated blueberries from Romania. Notulae Botanicae Hort Agrobotanici, 39(2), 70–76.

Celik, F., Bozhuyuk, M. R., Ercisli, S. & Gundogdu, M. (2018). Physicochemical and bioactive characteristics of wild grown bilberry (Vaccinium myrtillus L.) genotypes from northeastern Turkey. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 46(1), 128–133.

Colak, N., Torun, H., Gruz, J., Strnad, M., Subrtova, M., Inceer, H. & Ayaz, F. A. (2016). Comparison of phenolics and phenolic acid profiles in conjunction with oxygen radical absorbing capacity (ORAC) in berries of Vaccinium arctostaphylos L. and V. myrtillus L. Polish Journal of Food and Nutrition Sciences, 66(2), 85–91.

Dosedĕl, M., Jirkovský, E., Macáková, K., Kujovská Krčmová, L., Javorská, L., Pourová, J., Mercolini, L., Remião, F., Nováková, L.& Mladĕnka, P. (2021). Vitamic C – sources, physiological role, kinetics, deficiency, use, toxicity, and determination. Nutrients, 13(12), 615.

Dyduch-Siemińska, M., Najda, A., Dyduch, J., Gantner, M. & Klimek, K. (2015). The content of secondary metabolites and antioxidant activity of wild strawberry fruit (Fragaria vesca L.). Journal of Analytical Methods in Chemistry, 2015.

Elez Garofulić, I., Kovačević Ganić, K., Galić, I., Dragović-Uzelac, V. & Savić, Z. (2012). The influence of processing on physic-chemical parameters, phenolics, antioxidant activity and sensory attributes of elderberry (Sambucus nigra L.) fruit wine. Croatian Journal of Food Technology, Biotechnology and Nutrition, 7(Special issue – 7th), 9–13.

Enomoto, H., Takahashi, S., Takeda, S. & Hatta, H. (2020). Distribution of flavan-3-ol species in ripe strawberry fruit revealed by matrix-assisted laser desorption/ionization-mass spectrometry imaging. Molecules, 25(1), 103.

Fenech, M., Amaya, I., Valpuesta V. & Botella, M. A. (2019). Vitamin C content in fruits: biosynthesis and regulation. Frontiers in Plant Science, 9, 2006.

Giusti, M. M.& Wrolstad, R. E. (2001). Characterization and measurement of anthocyanins by UV-visible spectroscopy. In: S. J. Schwartz, & R. E. Wrolstad (Eds.) Current Protocols in Food Analytical Chemistry. John Wiley and Sons.

Hidalgo, G-I. & Almajano, M. P. (2017). Red Fruits: Extraction of Antioxidants, Phenolic Content, and Radical Scavenging Determination: A Review. Antioxidants, 6(1), 7.

Johnson, S. A. & Arjmandi, B. H. (2013). Evidence for anti-cancer properties of blueberries: a mini-review. Anti-Cancer Agents in Medicinal Chemistry, 13(8), 1142–1148.

Kalaskar, M. G. & Surana, S. J. (2014). Free radical scavenging, immunomodulatory activity and chemical composition of Luffa acutangula var. amara (Cucurbitaceae) pericarp. Journal of the Chilean Chemical Society, 59(1), 2299–2302.

Kasote, D. M., Katyare, S. S., Hegde, M. V. & Bae, H. (2015). Significance of antioxidant potential of plants and its relevance to therapeutic applications. International Journal of Biological Sciences, 11(8), 982–991.

Kevers, C., Pincemail, J., Defraigne, J. O. & Dommes, J. (2014). Antioxidant capacity of small dark fruits: influence of cultivars and harvest time. Journal of Berry Research, 4(2), 97–105.

Lai, H. Y. & Lim, Y. Y. (2011). Evaluation of antioxidant activities of the methanolic extracts of selected ferns in Malaysia. International Journal of Environmental Science and Development, 2(6), 442–447.

Laličić-Petronijević, J., Komes, D., Gorjanović, S., Belščak-Cvitanović, A., Pezo, L., Pastor, F., Ostojić, S., Popov-Rajić, J. & Sužnjević, D. (2016). Content of total phenolics, flavan-3-ols and proanthocyanidins, oxidative stability and antioxidant capacity of chocolate during storage. Food Technology and Biotechnology, 54(1), 13–20.

Liston, A., Cronn, R. & Ashman T. L. (2014). Fragaria: a genus with deep historical roots and ripe for evolutionary and ecological insights. American Journal of Botany, 101(10), 1686–1699.

Manganaris, G. A., Goulas, V., Vicente, A. R. & Terry, L. A. (2013). Berry antioxidants: small fruits providing large benefits. Journal of the Science of Food and Agriculture, 94(5), 825–833.

Marcocci, L., Maguire, J. J., Droy-Lefaix, M. T. & Packer, L. (1994). The nitric oxide scavenging properties of Ginkgo biloba extract EGb761. Biochemical and Biophysical Research Communication, 201(2), 748–755.

Milivojevic, J., Maksimovic, V., Dragisic Maksimovic, J., Radivojevic, D., Poledica, M. & Ercişli, S. (2012). A comparison of major taste- and health-related compounds of Vaccinium berries. Turkish Journal of Biology, 36(6), 738–745.

Miller, N. J., Rice-Evans, C., Davies, M. J., Gopinathan, V. & Milner, A. (1993). A novel method for measuring antioxidant capacity and its application to monitoring and antioxidant status in premature neonates. Clinical Science, 84(4), 407–412.

Młynarczyk, K., Walkowiak-Tomczak, D. & Łysiak, G. P. (2018). Bioactive properties of Sambucus nigra L. as a functional ingredient for food and pharmaceutical industry. Journal of Functional Foods, 40, 377–390.

Nagavani, V. & Raghava Rao, T. (2010). Evaluation of antioxidant potential and identification of polyphenols by RP-HPLC in Michelia champaca flowers. Advances in Biological Research, 4(3), 159–168.

Najda, A., Dyduch-Siemińska, M., Dyduch, J. & Gantner, M. (2014). Comparative analysis of secondary metabolites contents in Fragaria vesca L. fruits. Annals of Agricultural and Environmental Medicine, 21(2), 339–343.

Oanacea, S., Ghincevici, D. & Ketney, O. (2015). The effect of ultrasonic pretreatment and sample preparation on the extraction yield of antioxidant compounds and activity of black currant fruits. Acta Chimica Slovenica, 62(1), 242–248.

Özgen, M., Scheerens, J. C., Reese, R. N. & Miller, R. A. (2010). Total phenolic, anthocyanin contents and antioxidant capacity of selected elderberry (Sambucus canadensis L.) accessions. Pharmacognosy Magazine, 6(23), 198–203.

Panche, A. N., Diwan, A. D. & Changdra, S. R. (2016). Flavonoids: an overview. Journal of Nutritional Science, 5(e47), 1–15.

Peñarrieta, J. M., Alvarado, J. A., Bergenståhl, B.& Akesson, B. (2009). Total antioxidant capacity and content of phenolic compounds in wild strawberries (Fragaria vesca) collected in Bolivia. International Journal of Fruit Science, 9(4), 344–359.

Poiana, M. A., Alexa, E. & Mateescu, C. (2012). Tracking antioxidant properties and color changes in low-sugar bilberry jam as effect of processing, storage and pectin concentration. Chemistry Central Journal, 6(1), 1–11.

Prvulović, D., Malenčić, Dj., Ljubojević, M., Barać, G. & Ognjanov, V. (2016). The influence of maturity stage and extraction solvents on phenolic content and antioxidant activity of three sweet cherry cultivars. Lucrari Stiintifice, seria Agronomie, 59(2), 403–408.

Sadeer, N. B., Montesano, D., Albrizio, S., Zengin, G. & Mahomoodally, M. F. (2020). The versatility of antioxidant assays in food science and safety-chemistry, applications, strengths, and limitations. Antioxidants, 9(8), 709.

Sadler, G. D. & Murphy P. A. (2010). pH and titratable acidity. In S. S. Nielsen (Ed.) Food Analysis. 4th edition (pp. 219–1238). Springer.

Saha, A. K., Rahman, Md. R., Shahriar, M., Saha, S. K., Al Azad, N. & Das, D. (2013). Screening of six Ayurvedic medicinal plant extracts for antioxidant and cytotoxic activity. Journal of Pharmacognosy and Phytochemistry, 2(2), 181–188.

Salamon, I., Şimşek Sezer, E. N., Kryvtsova, M. & labun, P. (2021). Antiproliferative and antimicrobial activity of anthocyanins from berry fruits after their isolation and freeze-drying. Applied Science, 11(5), 2096.

Šapčanin, A., Salihović, M., Uzunović, A., Osmanović, A., Špirtović-Halilović, S., Pehlić, E. & Jančan, G. (2017). Antioxidant activity of fruits and vegetables commonly used in everyday diet in Bosnia and Herzegovina. Bulletin of the Chemists and Technologists of Bosnia and Herzegovina, 49, 15–18.

Skovankova, S., Sumczynski, D., Mlcek, J., Jurikova, T. & Sochor, J. (2015). Bioactive compounds and antioxidant activity in different types of berries. International Journal of Molecular Sciences, 16(10), 24673–24706.

Sulusoglu, M. (2014). Phenolic compounds and uses in fruit growing. Turkish Journal of Agricultural and Natural Sciences, 1, 947–956.

Tumbas, V., Čanadanović-Brunet, J., Gille, L., Đilas, S. & Ćetković, G. (2010). Superoxide anion radical scavenging activity of bilberry (Vaccinium myrtillus L.). Journal of Berry Research, 1(1), 13–23. https://doi:10.3233/BR-2010-002

Valentão, P., Fernandes, E., Carvalho, F., Andrade, P. B., Seabra, R. M. & Bastos, M. L. (2002). Antioxidative properties of cardoon (Cynara cardunculus L.) infusion against superoxide radical, hydroxyl radical, and hypochlorus acid. Journal of Agricultural and Food Chemistry, 50(17), 4989–4993.

Vujanović, M., Majkić, T., Zengin, G., Beara, I., Tomović, V., Šojić, B., Đurović, S. & Radojković, M. (2020). Elderberry (Sambucus nigra L.) juice as a novel functional product rich in health-promoting compounds. RSC Advances, 10, 44805. https://doi:10.1039/d0ra09129d

Vulić, J. J., Vračar, Lj. O. & Šumić, Z. M. (2008). Chemical characteristics of cultivated elderberry fruit. Acta Periodica Technologica, 39, 85–90. https://doi:10.2298/APT0839085V

Wang, S. Y. & Lewers, K. S. (2007). Antioxidant capacity and flavonoid content in wild strawberries. Journal of the American Society for Horticultural Science, 132(5), 629–637.

Zhang, Y. J., Gan, R. Y., Li, S, Zhou, Y., Li, A. N., Xu, D. P. & Li, H. B. (2015). Antioxidant phytochemicals for the prevention and treatment of chronic diseases. Molecules, 20(12), 21138–21156. https://doi:10.3390/molecules201219753

Zhou, Y., Gao, Y. G. & Giusti, M. M. (2020). Accumulation of anthocyanins and other phytochemicals in American elderberry cultivars during fruit ripening and its impact on color expression. Plants, 9, 1721. https://doi:10.3390/plants9121721