Opportunities for carbon sequestration in intensive soft fruit production systems


Authors: Martin Lukac

Volume/Issue: Volume 25: Issue 2

Published online: 01 Nov 2022

Pages: 107 - 114

DOI: https://doi.org/10.2478/ahr-2022-0014


The historical contribution of agriculture to human-induced climate change is indisputable; the removal of natural vegetation and soil cultivation to feed the growing human population has resulted in a substantial carbon transfer to the atmosphere. While maintaining their food production capacity, soft fruit production systems now have an opportunity to utilise a recent technology change to enhance their carbon sequestration capacity. We use an example of a farm in South-East England to illustrate how the soft fruit crop production system can be optimised for carbon storage. We performed an audit of carbon stocks in the soil and tree biomass and show that it is imperative to plan crop rotation to establish (semi) permanent inter-row strips that will remain in situeven if the main crop is replaced. These strips should be covered with grassland vegetation, preferable with deeper rooting grass species mixed with species supporting nitrogen fi xation. Finally, grassland mowing cuttings should be left in situ and hedgerows and tree windbreaks should be expanded across the farm. Modern soft fruit production systems can enhance their carbon storage while maintaining commercially relevant levels of productivity.

Keywords: soft fruit, carbon storage, table-top, tree biomass



Agostini, F., Gregory, A. S., & Richter, G. M. (2015). Carbon sequestration by perennial energy crops: is the jury still out? Bioenergy research, 8(3), 1057–1080. https://doi.org/10.1007/s12155-014-9571-0

Błonska, E., Lasota, J., da Silva, G. R. V., Vanguelova, E., Ashwood, F., Tibbett, M., Watts, K., & Lukac, M. (2020). Soil organic matter stabilization and carbon-cycling enzyme activity are affected by land management. Annals of Forest Research, 63(1), 71–86. https://doi.org/10.15287/afr.2019.1837

Bondeau, A., Smith, P. C., Zaehle, S., Schaphoff, S., Lucht, W., Cramer, W., Gerten, D., Lotze-Campen, H., Müller, C., & Reichstein, M. (2007). Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Global Change Biology, 13(3), 679–706. https://doi.org/10.1111/j.1365-2486.2006.01305.x

Briedis, C., de Moraes Sá, J. C., Caires, E. F., de Fátima Navarro, J., Inagaki, T. M., Boer, A., Neto, C. Q., de Oliveira Ferreira, A., Canalli, L. B., & Dos Santos, J. B. (2012). Soil organic matter pools and carbon-protection mechanisms in aggregate classes influenced by surface liming in a no-till system. Geoderma, 170, 80–88. https://doi.org/10.1016/j.geoderma.2011.10.011

Cheng, W. (1999). Rhizosphere feedbacks in elevated CO2. Tree physiology, 19(4–5), 313–320. https://doi.org/10.1093/treephys/19.4-5.313

Drexler, S., Gensior, A., & Don, A. (2021). Carbon sequestration in hedgerow biomass and soil in the temperate climate zone. Regional Environmental Change, 21(3), 1–14. https://doi.org/10.1007/s10113-021-01798-8

Ellis, C. R., Feltham, H., Park, K., Hanley, N., & Goulson, D. (2017). Seasonal complementary in pollinators of soft-fruit crops. Basic and Applied Ecology, 19, 45–55. https://doi.org/10.1016/j.baae.2016.11.007

Golub, A., Hertel, T., Lee, H.-L., Rose, S., & Sohngen, B. (2009). The opportunity cost of land use and the global potential for greenhouse gas mitigation in agriculture and forestry. Resource and Energy Economics, 31(4), 299–319. https://doi.org/10.1016/j.reseneeco.2009.04.007

Houghton, R., Davidson, E., & Woodwell, G. (1998). Missing sinks, feedbacks, and understanding the role of terrestrial ecosystems in the global carbon balance. Global Biogeochemical Cycles, 12(1), 25–34. https://doi.org/10.1029/97GB02729

Johansson, T. (1999a). Biomass equations for determining fractions of European aspen growing on abandoned farmland and some practical implications. Biomass and Bioenergy, 17(6), 471–480. https://doi.org/10.1016/S0961-9534(99)00073-2

Johansson, T. (1999b). Dry matter amounts and increment in 21-to 91-year-old common alder and grey alder and some practical implications. Canadian Journal of Forest Research, 29(11), 1679–1690. https://doi.org/10.1139/x99-126

Johnson, J. M.-F., Franzluebbers, A. J., Weyers, S. L., & Reicosky, D. C. (2007). Agricultural opportunities to mitigate greenhouse gas emissions. Environmental Pollution, 150(1), 107–124. https://doi.org/10.1016/j.envpol.2007.06.030

Lukac, M., Lagomarsino, A., Moscatelli, M. C., De Angelis, P., Cotrufo, M. F., & Godbold, D. L. (2009). Forest soil carbon cycle under elevated CO2 – a case of increased throughput? Forestry, 82(1), 75–86. https://doi.org/10.1093/forestry/cpn041

Norby, R. J., Hanson, P. J., O‘Neill, E. G., Tschaplinski, T. J., Weltzin, J. F., Hansen, R. A., Cheng, W., Wullschleger, S. D., Gunderson, C. A., & Edwards, N. T. (2002). Net primary productivity of a CO2 – enriched deciduous forest and the implications for carbon storage. Ecological Applications, 12(5), 1261–1266. https://doi.org/10.1890/1051-0761(2002)012[1261:NPPOAC]2.0.CO;2

Peters, R. D., Sturz, A. V., Carter, M. R., & Sanderson, J. B. (2003). Developing disease-suppressive soils through crop rotation and tillage management practices. Soil and Tillage Research, 72(2), 181–192. https://doi.org/10.1016/S0167-1987(03)00087-4

Tivet, F., Carlos de Moraes Sá, J., Borszowskei, P. R., Letourmy, P., Briedis, C., Ferreira, A. O., & Burkner dos Santos Thiago Massao Inagaki, J. (2012). Soil Carbon Inventory by Wet Oxidation and Dry Combustion Methods: Effects of Land Use, Soil Texture Gradients, and Sampling Depth on the Linear Model of C- Equivalent Correction Factor. Soil Science Society of America Journal, 76(3), 1048–1059. https://doi.org/10.2136/sssaj2011.0328

Wattel-Koekkoek, E., Buurman, P., Van Der Plicht, J., Wattel, E., & Van Breemen, N. (2003). Mean residence time of soil organic matter associated with kaolinite and smectite. European journal of soil science, 54(2), 269–278. https://doi.org/10.1046/j.1365-2389.2003.00512.x

Yang, Y., Tilman, D., Furey, G., & Lehman, C. (2019). Soil carbon sequestration accelerated by restoration of grassland biodiversity. Nature communications, 10(1), 1–7. https://doi.org/10.1038/s41467-019-08636-w