Reviewing the effect of pyrolysis temperature on the fourier-transform infrared spectra of biochars

PDF

Authors: Narges Hemati Matin and Elena Aydin

Volume/Issue: Volume 25: Issue 2

Published online: 01 Nov 2022

Pages: 160 - 173

DOI: https://doi.org/10.2478/ahr-2022-0020


Abstract

Pyrolysis of feedstocks to produce biochar for soil remediation employed to be a convenient method regarding improvement of soil fertility, increasing carbon stability and decreasing greenhouse gas emissions. Biochar properties and its eff ect after incorporation into the soils vary depending on the characteristics of feedstocks and pyrolysis process. This paper aims to compare the eff ect of pyrolysis temperature on the frequency of functional groups in diff erent biochars made from plant feedstocks over the temperature range from 300 °C to 700 °C. An increase in pyrolysis temperature positively aff ects biochar surface properties until the deformation step in C = O, –COOH, and OH groups and as a result, the surface area of biochar decreases at high temperature (more than 600 °C). The breakdown of hemicellulose, cellulose, and lignin also occurs at temperatures more than 600 °C. Consequently, the biochar quality is reduced with increasing pyrolysis temperature although such biochar may be suitable for rising the content of stable carbon in the soils. Over the long-term, the stability of biochar can contribute to carbon sequestration, retention of water and ions in the soil.


Keywords: pyrolysis temperature, carbonization, degradation, functional groups

PDF

References

Abbas, T., Rizwan, M., Ali, S., Adrees, M., Mahmood, A., Ziaur-Rehman, M., Ibrahim, M., Arshad, M., & Qayyum, M. F. (2018a). Biochar application increased the growth and yield and reduced cadmium in drought stressed wheat grown in an aged contaminated soil. Ecotoxicology and Environmental Safety, 148, 825–833. https://doi.org/10.1016/j.ecoenv.2017.11.063


Abbas, T., Rizwan, M., Ali, S., Adrees, M., Zia-ur-Rehman, M., Qayyum, M. F., Ok, Y. S., & Murtaza, G. (2018b). Effect of biochar on alleviation of cadmium toxicity in wheat (Triticum aestivum L.) grown on Cd-contaminated saline soil. Environmental Science and Pollution Research, 25(26), 25668–25680. https://doi.org/10.1007/s11356-017-8987-4


Aghbashlo, M., Tabatabaei, M., Nadian, M. H., Davoodnia, V., & Soltanian, S. (2019). Prognostication of lignocellulosic biomass pyrolysis behavior using ANFIS model tuned by PSO algorithm. Fuel, 253, 189–198. https://doi.org/10.1016/j.fuel.2019.04.169


Ahmad, M., Lee, S. S., Dou, X., Mohan, D., Sung, J. K., Yang, J. E., & Ok, Y. S. (2012). Effects of pyrolysis temperature on soybean stover-and peanut shell-derived biochar properties and TCE adsorption in water. Bioresource Technology, 118, 536–544. https://doi.org/10.1016/j.biortech.2012.05.042


Ahmad, M., Ok, Y. S., Rajapaksha, A. U., Lim, J. E., Kim, B. Y., Ahn, J. H., Lee, Y. H., Al-Wabel, M. I., Lee, S. E., & Lee, S. S. (2016). Lead and copper immobilization in a shooting range soil using soybean stover-and pine needle-derived biochars: Chemical, microbial and spectroscopic assessments. Journal of Hazardous Materials, 301, 179–186. https://doi.org/10.1016/j.jhazmat.2015.08.029


Ahmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D., Vithanage, M., Lee, S. S., & Ok, Y. S. (2014). Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere, 99, 19–33. https://doi.org/10.1016/j.chemosphere.2013.10.071


Alburquerque, J. A., Calero, J. M., Barrón, V., Torrent, J., del Campillo, M. C., Gallardo, A., & Villar, R. (2014). Effects of biochars produced from different feedstocks on soil properties and sunflower growth. Journal of Plant Nutrition and Soil Science, 177(1), 16–25. https://doi.org/10.1002/jpln.201200652


Ali, L., Palamanit, A., Techato, K., Ullah, A., Chowdhury, M. S., & Phoungthong, K. (2022). Characteristics of biochars derived from the pyrolysis and Co-pyrolysis of rubberwood sawdust and sewage sludge for further applications. Sustainability, 14(7), 3829. https://doi.org/10.3390/su14073829


Alkurdi, S. S., Herath, I., Bundschuh, J., Al-Juboori, R. A., Vithanage, M., & Mohan, D. (2019). Biochar versus bone char for a sustainable inorganic arsenic mitigation in water: what needs to be done in future research? Environment International, 127, 52–69. https://doi.org/10.1016/j.envint.2019.03.012


Ambaye, T. G., Vaccari, M., van Hullebusch, E. D., Amrane, A., & Rtimi, S. (2021). Mechanisms and adsorption capacities of biochar for the removal of organic and inorganic pollutants from industrial wastewater. International Journal of Environmental Science and Technology, 18(10), 3273–3294. https://doi.org/10.1007/s13762-020-03060-w


Amonette, J. E., Kim, J., Russell, C. K., Palumbo, A. V., & Daniels, W. L. (2003, October). Enhancement of soil carbon sequestration by amendment with fly ash. In Proceedings.


Apaydin-Varol, E., Pütün, E., & Pütün, A. E. (2007). Slow pyrolysis of pistachio shell. Fuel, 86(12–13), 1892–1899. https://doi.org/10.1016/j.fuel.2006.11.041


Asadullah, M., Ab Rasid, N. S., Kadir, S. A. S. A., & Azdarpour, A. (2013). Production and detailed characterization of bio-oil from fast pyrolysis of palm kernel shell. Biomass and Bioenergy, 59, 316–324. https://doi.org/10.1016/j.biombioe.2013.08.037


Blanco-Canqui, H. (2021). Does biochar improve all soil ecosystem services? GCB Bioenergy, 13(2), 291–304. https://doi.org/10.1111/gcbb.12783


Bornø, M. L., Müller-Stöver, D. S., & Liu, F. (2018). Contrasting effects of biochar on phosphorus dynamics and bioavailability in different soil types. Science of the Total Environment, 627, 963–974. https://doi.org/10.1016/j.scitotenv.2018.01.283


Brewer, C.E., Schmidt-Rohr, K., Satrio, J.A., & Brown, R.C. (2009). Characterization of biochar from fast pyrolysis and gasification systems. Environmental Progress & Sustainable Energy: An Official Publication of the American Institute of Chemical Engineers, 28(3), 386–396. https://doi.org/10.1002/ep.10378


Brick, S., & Lyutse, S. (2010). Biochar: Assessing the promise and risks to guide US policy. Natural Resources Defense Council. USA.


Cantrell, K. B., Hunt, P. G., Uchimiya, M., Novak, J. M., & Ro, K. S. (2012). Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresource Technology, 107, 419–428. https://doi.org/10.1016/j.biortech.2011.11.084


Cao, X., Ma, L., Gao, B., & Harris, W. (2009). Dairy-manure derived biochar effectively sorbs lead and atrazine. Environmental Science and Technology, 43(9), 3285–3291. https://doi.org/10.1021/es803092k


Carrier, M., Hardie, A. G., Uras, Ü., Görgens, J., & Knoetze, J. H. (2012). Production of char from vacuum pyrolysis of South-African sugar cane bagasse and its characterization as activated carbon and biochar. Journal of Analytical and Applied Pyrolysis, 96, 24–32. https://doi.org/10.1016/j.jaap.2012.02.016


Chen, B., Chen, Z., & Lv, S. (2011). A novel magnetic biochar efficiently sorbs organic pollutants and phosphate. Bioresource Technology, 102(2), 716–723. https://doi.org/10.1016/j.biortech.2010.08.067


Chen, B., Zhou, D., & Zhu, L. (2008). Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environmental Science and Technology, 42(14), 5137–5143. https://doi.org/10.1021/es8002684


Chun, Y., Sheng, G., Chiou, C. T., & Xing, B. (2004). Compositions and sorptive properties of crop residue-derived chars. Environmental Science and Technology, 38(17), 4649–4655. https://doi.org/10.1021/es035034w


Claoston, N., Samsuri, A. W., Ahmad Husni, M. H., & Mohd Amran, M. S. (2014). Effects of pyrolysis temperature on the physicochemical properties of empty fruit bunch and rice husk biochars. Waste Management and Research, 32(4), 331–339. https://doi.org/10.1177/0734242X14525822


Dai, S., Li, H., Yang, Z., Dai, M., Dong, X., Ge, X., Sun, M., & Shi, L. (2018). Effects of biochar amendments on speciation and bioavailability of heavy metals in coal-mine-contaminated soil. Human and Ecological Risk Assessment: An International Journal, 24(7), 1887–1900. https://doi.org/10.1080/10807039.2018.1429250


Das, D. D., Schnitzer, M. I., Monreal, C. M., & Mayer, P. (2009). Chemical composition of acid–base fractions separated from biooil derived by fast pyrolysis of chicken manure. Bioresource Technology, 100(24), 6524–6532. https://doi.org/10.1016/j.biortech.2009.06.104


Das, S. K., Ghosh, G. K., & Avasthe, R. (2020). Biochar application for environmental management and toxic pollutant remediation. Biomass Conversion and Biorefinery, 1–12. https://doi.org/10.1007/s13399-020-01078-1


Dieguez-Alonso, A., Funke, A., Anca-Couce, A., Rombolà, A. G., Ojeda, G., Bachmann, J., & Behrendt, F. (2018). Towards biochar and hydrochar engineering – Influence of process conditions on surface physical and chemical properties, thermal stability, nutrient availability, toxicity and wettability. Energies, 11(3), 496. https://doi.org/10.3390/en11030496


Figueredo, N. A. D., Costa, L. M. D., Melo, L. C. A., Siebeneichlerd, E. A., & Tronto, J. (2017). Characterization of biochars from different sources and evaluation of release of nutrients and contaminants. Revista Ciência Agronômica, 48, 3–403. https://doi.org/10.5935/1806-6690.20170046


Fu, P., Hu, S., Xiang, J., Sun, L., Li, P., Zhang, J., & Zheng, C. (2009). Pyrolysis of maize stalk on the characterization of chars formed under different devolatilization conditions. Energy and Fuels, 23(9), 4605–4611. https://doi.org/10.1021/ef900268y


Godwin, P. M., Pan, Y., Xiao, H., & Afzal, M. T. (2019). Progress in preparation and application of modified biochar for improving heavy metal ion removal from wastewater. Journal of Bioresources and Bioproducts, 4(1), 31–42. https://doi.org/10.21967/jbb.v4i1.180


Griffin, D. E., Wang, D., Parikh, S. J., & Scow, K. M. (2017). Short-lived effects of walnut shell biochar on soils and crop yields in a long-term field experiment. Agriculture, Ecosystems and Environment, 236, 21–29. https://doi.org/10.1016/j.agee.2016.11.002


He, Z., & Ohno, T. (2012). Fourier transform infrared and fluorescence spectral features of organic matter in conventional and organic dairy manure. Journal of Environmental Quality, 41(3), 911–919. https://doi.org/10.2134/jeq2011.0226


Herath, I., Kumarathilaka, P., Al-Wabel, M. I., Abduljabbar, A., Ahmad, M., Usman, A. R., & Vithanage, M. (2016). Mechanistic modeling of glyphosate interaction with rice husk derived engineered biochar. Microporous and Mesoporous Materials, 225, 280–288. https://doi.org/10.1016/j.micromeso.2016.01.017


Horák, J., Šimanský, V., Aydin, E., Igaz, D., Buchkina, N., & Balashov, E. (2020). Effects of biochar combined with N-fertilization on soil CO2 emissions, crop yields and relationships with soil properties. Polish Journal of Environmental Studies, 29(5), 3597–3609. https://doi.org/10.15244/pjoes/117656


Hossain, M. K., Strezov, V., Chan, K. Y., & Nelson, P. F. (2010). Agronomic properties of wastewater sludge biochar and bioavailability of metals in production of cherry tomato (Lycopersicon esculentum). Chemosphere, 78(9), 1167–1171. https://doi.org/10.1016/j.chemosphere.2010.01.009


Hou, J., Yu, J., Li, W., He, X., & Li, X. (2022). The Effects of chemical oxidation and high-temperature reduction on surface functional groups and the adsorption performance of biochar for sulfamethoxazole adsorption. Agronomy, 12(2), 510. https://doi.org/10.3390/agronomy12020510


Huang, H., Reddy, N. G., Huang, X., Chen, P., Wang, P., Zhang, Y., Huang, Y., Lin, P., & Garg, A. (2021). Effects of pyrolysis temperature, feedstock type and compaction on water retention of biochar amended soil. Scientific Reports, 11(1), 1–19. https://doi.org/10.1038/s41598-021-86701-5


Huang, Y. F., Kuan, W. H., Lo, S.L., & Lin, C.F. (2008). Total recovery of resources and energy from rice straw using microwave-induced pyrolysis. Bioresource technology, 99(17), 8252–8258. https://doi.org/10.1016/j.biortech.2008.03.026


IBI (2012) Standardized product definition and product testing guidelines for biochar that is used in soil. International Biochar Initiative. April 2012.


Ippolito, J. A., Cui, L., Kammann, C., Wrage-Mönnig, N., Estavillo, J. M., Fuertes-Mendizabal, T., Cayuela, M. L., Sigua, G., Novak, J., Spokas, K., & Borchard, N. (2020). Feedstock choice, pyrolysis temperature and type influence biochar characteristics: a comprehensive meta-data analysis review. Biochar, 2(4), 421–438. https://doi.org/10.1007/s42773-020-00067-x


Janu, R., Mrlik, V., Ribitsch, D., Hofman, J., Sedláček, P., Bielská, L., & Soja, G. (2021). Biochar surface functional groups as affected by biomass feedstock, biochar composition and pyrolysis temperature. Carbon Resources Conversion, 4, 36–46. https://doi.org/10.1016/j.crcon.2021.01.003


Jung, J. M., Oh, J. I., Baek, K., Lee, J., & Kwon, E. E. (2018). Biodiesel production from waste cooking oil using biochar derived from chicken manure as a porous media and catalyst. Energy Conversion and Management, 165, 628–633. https://doi.org/10.1016/j.enconman.2018.03.096


Keiluweit, M., Nico, P. S., Johnson, M. G., & Kleber, M. (2010). Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environmental Science and Technology, 44(4), 1247–1253. https://doi.org/10.1021/es9031419


Khan, K. Y., Ali, B., Cui, X., Feng, Y., Yang, X., & Stoffella, P. J. (2017). Impact of different feedstocks derived biochar amendment with cadmium low uptake affinity cultivar of pak choi (Brassica rapa ssb. chinensis L.) on phytoavoidation of Cd to reduce potential dietary toxicity. Ecotoxicology and Environmental Safety, 141, 129–138. https://10.1016/j.ecoenv.2017.03.020


Kiran, Y. K., Barkat, A., Cui, X. Q., Ying, F. E. N. G., Pan, F. S., Lin, T. A. N. G., & Yang, X. E. (2017). Cow manure and cow manure-derived biochar application as a soil amendment for reducing cadmium availability and accumulation by Brassica chinensis L. in acidic red soil. Journal of Integrative Agriculture, 16(3), pp.725–734. https://doi.org/10.1016/S2095-3119(16)61488-0


Kloss, S., Zehetner, F., Dellantonio, A., Hamid, R., Ottner, F., Liedtke, V., Schwanninger, M., Gerzabek, M. H., & Soja, G. (2012). Characterization of slow pyrolysis biochars: effects of feedstocks and pyrolysis temperature on biochar properties. Journal of Environmental Quality, 41(4), 990–1000. https://doi.org/10.1016/j.biombioe.2017.06.024


Kung, C.C., McCarl, B. A., & Chen, C. C. (2014). An environmental and economic evaluation of pyrolysis for energy generation in Taiwan with endogenous land greenhouse gases emissions. International Journal of Environmental Research and Public Health, 11(3), 2973–2991. https://doi.org/10.3390/ijerph110302973


Lammers, K., Arbuckle-Keil, G., & Dighton, J. (2009). FTIR study of the changes in carbohydrate chemistry of three New Jersey pine barrens leaf litters during simulated control burning. Soil Biology and Biochemistry, 41(2), 340–347. https://doi.org/10.1016/j.soilbio.2008.11.005


Lee, J. W., Kidder, M., Evans, B. R., Paik, S., Buchanan Iii, A. C., Garten, C. T., & Brown, R. C. (2010). Characterization of biochars produced from cornstovers for soil amendment. Environmental Science and Technology, 44(20), 7970–7974. https://doi.org/10.1021/es101337x


Lehmann, J., & Joseph, S. eds. (2015). Biochar for environmental management: science, technology and implementation. Routledge.


Lehmann, J., Gaunt, J., & Rondon, M. (2006). Bio-char sequestration in terrestrial ecosystems. Mitig. Adapt. Strat. Glob. Change, 11, 395–419. https://doi.org/10.1007/s11027-005-9006-5


Li, F., Shen, K., Long, X., Wen, J., Xie, X., Zeng, X., Liang, Y., Wei, Y., Lin, Z., Huang, W., & Zhong, R. (2016). Preparation and characterization of biochars from Eichornia crassipes for cadmium removal in aqueous solutions. PloS one, 11(2), e0148132. https://doi.org/10.1371/journal.pone.0148132


Lin, D., Pan, B., Zhu, L., & Xing, B. (2007). Characterization and phenanthrene sorption of tea leaf powders. Journal of Agricultural and Food Chemistry, 55(14), 5718–5724. https://doi.org/10.1021/jf0707031


Lin, L., Qiu, W., Wang, D., Huang, Q., Song, Z., & Chau, H.W. (2017). Arsenic removal in aqueous solution by a novel Fe-Mn modified biochar composite: characterization and mechanism. Ecotoxicology and environmental safety, 144, 514–521. https://doi.org/10.1016/j.ecoenv.2017.06.063


Liu, Y., He, Z., & Uchimiya, M. (2015). Comparison of biochar formation from various agricultural by-products using FTIR spectroscopy. Modern Applied Science, 9(4), 246. http://dx.doi.org/10.5539/mas.v9n4p246


Matin, N. H., Jalali, M., Antoniadis, V., Shaheen, S. M., Wang, J., Zhang, T., Wang, H., & Rinklebe, J. (2020). Almond and walnut shell-derived biochars affect sorption-desorption, fractionation, and release of phosphorus in two different soils. Chemosphere, 241, 124888. https://doi.org/10.1016/j.chemosphere.2019.124888


Meng, J., Wang, L., Liu, X., Wu, J., Brookes, P. C., & Xu, J. (2013). Physicochemical properties of biochar produced from aerobically composted swine manure and its potential use as an environmental amendment. Bioresource Technology, 142, 641–646. https://doi.org/10.1016/j.biortech.2013.05.086


Mochidzuki, K., Soutric, F., Tadokoro, K., Antal, M. J., Tóth, M., Zelei, B., & Várhegyi, G. (2003). Electrical and physical properties of carbonized charcoals. Industrial and Engineering Chemistry Research, 42(21), 5140–5151. https://doi.org/10.1021/ie030358e


Mukherjee, A., & Lal, R. (2013). Biochar impacts on soil physical properties and greenhouse gas emissions. Agronomy, 3(2), 313–339. https://doi.org/10.3390/agronomy3020313


Novak, J. M., Lima, I., Xing, B., Gaskin, J. W., Steiner, C., Das, K. C., Ahmedna, M., Rehrah, D., Watts, D. W., Busscher, W. J., & Schomberg, H. (2009). Characterization of designer biochar produced at different temperatures and their effects on a loamy sand. Ann. Environ. Sci, 3(2), 195–206. https://openjournals.neu.edu/aes/journal/article/view/v3art5


Özçimen, D., & Ersoy-Meriçboyu, A. (2010). Characterization of biochar and bio-oil samples obtained from carbonization of various biomass materials. Renewable Energy, 35(6), 1319–1324. https://doi.org/10.1016/j.renene.2009.11.042


Pütün, A. E., Özbay, N., Önal, E. P., & Pütün, E. (2005). Fixed-bed pyrolysis of cotton stalk for liquid and solid products. Fuel Processing Technology, 86(11), 1207–1219. https://doi.org/10.1016/j.fuproc.2004.12.006


Rao, H. J. (2021). Characterization studies on adsorption of lead and cadmium using activated carbon prepared from waste tyres. Nature Environment and Pollution Technology, 20(2). https://doi.org/10.46488/NEPT.2021.v20i02.012


Regmi, A., Singh, S., Moustaid-Moussa, N., Coldren, C., & Simpson, C. (2022). The Negative Effects of High Rates of Biochar on Violas Can Be Counteracted with Fertilizer. Plants,11(4), 491. https://doi.org/10.3390/plants11040491


Sahoo, K., Kumar, A., & Chakraborty, J.P. (2021). A comparative study on valuable products: bio-oil, biochar, non-condensable gases from pyrolysis of agricultural residues. Journal of Material Cycles and Waste Management, 23(1), 186–204. https://doi.org/10.1007/s10163-020-01114-2


Septien, S., Valin, S., Dupont, C., Peyrot, M., & Salvador, S. (2012). Effect of particle size and temperature on woody biomass fast pyrolysis at high temperature (1000–1400 C). Fuel, 97, 202–210. https://doi.org/10.1016/j.fuel.2012.01.049


Shackley, S., Carter, S., Knowles, T., Middelink, E., Haefele, S., Sohi, S., Cross, A., & Haszeldine, S. (2012). Sustainable gasification-biochar systems? A case-study of rice-husk gasification in Cambodia, Part I: Context, chemical properties, environmental and health and safety issues. Energy Policy, 42, 49–58. https://doi.org/10.1016/j.enpol.2011.11.026


Song, H., Wang, J., Garg, A., Lin, X., Zheng, Q., & Sharma, S. (2019). Potential of novel biochars produced from invasive aquatic species outside food chain in removing ammonium nitrogen: Comparison with conventional biochars and clinoptilolite. Sustainability, 11(24), 7136. https://doi.org/10.3390/su11247136


Spokas, K. A., Koskinen, W. C., Baker, J. M., & Reicosky, D. C. (2009). Impacts of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil. Chemosphere, 77(4), 574–581. https://doi.org/10.1016/j.chemosphere.2009.06.053


Sun, K., Ro, K., Guo, M., Novak, J., Mashayekhi, H., & Xing, B. (2011). Sorption of bisphenol A, 17α-ethinyl estradiol and phenanthrene on thermally and hydrothermally produced biochars. Bioresource Technology, 102(10), 5757–5763. https://doi.org/10.1016/j.biortech.2011.03.038


Sun, Y., Gao, B., Yao, Y., Fang, J., Zhang, M., Zhou, Y., Chen, H., & Yang, L. (2014). Effects of feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties. Chemical Engineering Journal, 240, 574–578. https://doi.org/10.1016/j.cej.2013.10.081


Toková, L., Igaz, D., Horák, J., & Aydin, E. (2020). Effect of biochar application and re-application on soil bulk density, porosity, saturated hydraulic conductivity, water content and soil water availability in a silty loam Haplic Luvisol. Agronomy, 10(7), 1005. https://doi.org/10.3390/agronomy10071005


Tong, X. J., Li, J. Y., Yuan, J. H., & Xu, R. K. (2011). Adsorption of Cu (II) by biochars generated from three crop straws. Chemical Engineering Journal, 172(2–3), 828–834. https://doi.org/10.1016/j.cej.2011.06.069


Trazzi, P. A., Leahy, J. J., Hayes, M. H., & Kwapinski, W. (2016). Adsorption and desorption of phosphate on biochars. Journal of Environmental Chemical Engineering, 4(1), 37–46. https://doi.org/10.1007/s12517-021-06629-y


Uchimiya, M., Orlov, A., Ramakrishnan, G., & Sistani, K. (2013). In situ and ex situ spectroscopic monitoring of biochar‘s surface functional groups. Journal of Analytical and Applied Pyrolysis, 102, 53–59. https://doi.org/10.1016/j.jaap.2013.03.014


Uchimiya, M., Wartelle, L. H., Klasson, K. T., Fortier, C. A., & Lima, I. M. (2011). Influence of pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil. Journal of Agricultural and Food Chemistry, 59(6), 2501–2510. https://doi.org/10.1021/jf104206c


Van de Velden, M., Baeyens, J., Brems, A., Janssens, B., & Dewil, R. (2010). Fundamentals, kinetics and endothermicity of the biomass pyrolysis reaction. Renewable Energy, 35(1), 232–242. https://doi.org/10.1016/j.renene.2009.04.019


Verheijen, F., Jeffery, S., Bastos, A. C., Van der Velde, M., & Diafas, I. (2010). Biochar application to soils. A critical scientific review of effects on soil properties, processes, and functions. EUR, 24099, 162. https://doi.org/10.2788/472


Wu, W., Yang, M., Feng, Q., McGrouther, K., Wang, H., Lu, H., & Chen, Y. (2012). Chemical characterization of rice straw-derived biochar for soil amendment. Biomass and bioenergy, 47, 268–276. https://doi.org/10.1016/j.biombioe.2012.09.034


Xu, Y., Luo, G., He, S., Deng, F., Pang, Q., Xu, Y., & Yao, H. (2019). Efficient removal of elemental mercury by magnetic chlorinated biochars derived from co-pyrolysis of Fe (NO3) 3-laden wood and polyvinyl chloride waste. Fuel, 239, 982–990. https://doi.org/10.1016/j.fuel.2018.11.102


Yaashikaa, P. R., Kumar, P. S., Varjani, S., & Saravanan, A., (2020). A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy. Biotechnology Reports, 28, e00570. https://doi.org/10.1016/j.btre.2020.e00570


Yaman, S. (2004). Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy Conversion and Management, 45(5), 651–671. https://doi.org/10.1016/S0196-8904(03)00177-8


Yang, H., Yan, R., Chen, H., Lee, D. H., & Zheng, C. (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86(12–13), 1781–1788. https://doi.org/10.1016/j.fuel.2006.12.013


Yuan, J. H., Xu, R. K., & Zhang, H. (2011). The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresource technology, 102(3), 3488–3497. https://doi.org/10.1016/j.biortech.2010.11.018


Yuan, T., Tahmasebi, A., & Yu, J. (2015). Comparative study on pyrolysis of lignocellulosic and algal biomass using a thermogravimetric and a fixed-bed reactor. Bioresource Technology, 175, 333–341. https://doi.org/10.1016/j.biortech.2014.10.108


Zanzi, R., Sjöström, K., & Björnbom, E. (1996). Rapid high-temperature pyrolysis of biomass in a free-fall reactor. Fuel, 75(5), 545–550. https://doi.org/10.1016/0016-2361(95)00304-5


Zeng, Z., Ye, S., Wu, H., Xiao, R., Zeng, G., Liang, J., Zhang, C., Yu, J., Fang, Y., & Song, B. (2019). Research on the sustainable efficacy of g-MoS2 decorated biochar nanocomposites for removing tetracycline hydrochloride from antibiotic-polluted aqueous solution. Science of the Total Environment, 648, 206–217. https://doi.org/10.1016/j.scitotenv.2018.08.108


Zhang, J., Huang, B., Chen, L., Li, Y., Li, W., & Luo, Z. (2018). Characteristics of biochar produced from yak manure at different pyrolysis temperatures and its effects on the yield and growth of highland barley. Chemical Speciation and Bioavailability, 30(1), 57–67. https://doi.org/10.1080/09542299.2018.1487774


Zhang, X., Zhao, B., Liu, H., Zhao, Y., & Li, L. (2022). Effects of pyrolysis temperature on biochar’s characteristics and speciation and environmental risks of heavy metals in sewage sludge biochars. Environmental Technology & Innovation, 26, 102288. https://doi.org/10.1016/j.eti.2022.102288


Zhao, S. X., Ta, N., & Wang, X. D. (2017). Effect of temperature on the structural and physicochemical properties of biochar with apple tree branches as feedstock material. Energies, 10(9), 1293. https://doi.org/10.3390/en10091293


Zolfi Baariani, M., Ronaghi, A., & Ghasemi, R. (2019). Influence of pyrolysis temperatures on FTIR analysis, nutrient bioavailability, and agricultural use of poultry manure biochars. Communications in Soil Science and Plant Analysis, 50(4), 402–411. https://doi.org/10.1080/00103624.2018.1563101