Investigation of leafy shoots and tea products of European mistletoe (Viscum album L.) with special focus on their antioxidant capacity


Authors: Ferenc Lantos, Béla Márton Ormódi, László Makra, Tibor Hajtó, Tímea Süli-Zakar and Judit Krisch

Volume/Issue: Volume 25: Issue 2

Published online: 01 Nov 2022

Pages: 181 - 188



Antioxidants are compounds that inhibit combustion (oxidation) processes. Antioxidants are vital components of our body, which can be obtained in part through plant nutrition. Therefore, it is very important to study species that have signifi cantly higher antioxidant capacity than other species. The aim of the study was to investigate the antioxidant capacity of total polyphenols (TPC) of European mistletoe (Viscum album L.) leafy shoots collected from diff erent species of trees (black locust, European ash, white poplar, fi eld maple and black walnut) based on diff erent methods; DPPH (2,2-diphenyl-1-picrylhydrazyl), FRAP (ferric reducing antioxidant power) and TPC (total phenolic contents). The results proved that the antioxidant eff ect of leafy shoots from European ash (Fraxinus excelsior) against hydroxyl radicals (ROS) showed signifi cantly higher values than those of the other four tree species. We found that the DPPH, FRAP and TPC methods show signifi cant diff erences in antioxidant eff ect of European white mistletoe leafy shoots on the studied tree species and tea brands. However, the FRAP method shows higher sensitivity for trees but for tea brands, the DPPH method is more sensitive. The reason for the diff erence might be explained by the diff erent methods of drying. In the future, we consider it feasible to plant ash groves at an altitude of at least 80 m above sea level in a closed area, where we can start growing European white mistletoe as an herb. Based on the results obtained European white mistletoe can be recommended as an herb to natural medicine for supplementary treatment of several cancer diseases.

Keywords: European mistletoe (Viscum album L.), leafy shoot, antioxidant capacity, polyphenols



Barney, C. W., Hawksworth, F. G., & Geils, B. W. (1998). Hosts of Viscum album. European Journal of Forest Pathology, 28, 187–208. https://doi:10.1111/j.1439-0329.1998.tb01249.x

Bartha, D., & Mátyás, Cs. (1995). Erdei fa- és cserjefajok előfordulása Magyarországon. Sopron (223 p.) (in Hungarian)

Benzie, I. F. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power‘‘: The FRAP assay. Analytical Biochemistry, 239, 70–76.

Blois, M. S. (1958). Antioxidant determination by the use of a stable free radicals. Nature, 4617, 1198–1200. https://doi:10.1038/1811199a0

Dietrich, J. B., Ribéreau-Gayon, G., Jung, M. L., Franz, H., Beck, J. P., & Anton, R. (1992). Identity of the N-terminal sequences of the three A chains of mistletoe (Viscum album L.) lectins: homology with ricin-like plant toxins and single-chain ribosome-inhibiting proteins. Anticancer Drugs, 3(5), 507–511. https://doi:10.1097/00001813-199210000-00010

Gillich, N., & Krüzselyi, D. (2014). Antioxidant and antibacterial effects of essential oils (Illóolajok antioxidáns és antibakteriális hatásai). Élet és Tudomány, 69, 51–52 (in Hungarian).

Frankel, E. N., & Meyer, A. S. (2000). The problems of using one-dimensional methods to evaluate multifunctional food and biological antioxidants. Journal of the Science of Food and Agriculture, 80, 1925–1941. https://doi:10.1002/1097-0010(200010)80:13<1925::AID-JSFA714>3.0.CO;2-4

Hajtó, T. (2002). Egy növényi lektin (VAA1) immunmodulációs hatásának in vivo vizsgálata egér timocitákon. (PhD thesis draft), Pécsi Tudományegyetem, Általános Orvostudományi Kar, Immunológiai és Biotechnológiai Intézet (University of Pécs, Faculty of General Medicine, Institute of Immunology and Biotechnology) (in Hungarian).

Hajtó, T., Hostanska, K., Berki, T., Pálinkás, L., Boldizsár, F., & Németh, P. (2005). Oncopharmacological Perspectives of a Plant Lectin (Viscum album Agglutinin-I): Overview of Recent Results from in vitro Experiments and in vivo Animal Models, and Their Possible Relevance for Clinical Applications. eCAM, 2(1), 59–67. https://doi:10.1093/ecam/neh058

Huang, D., Ou, B., & Prior, R. L. (2005). The chemistry behind Antioxidant Capacity Assays. Journal of Agricultural and Food Chemistry, 53, 1841–1856. https://doi:10.1021/jf030723c

Lantos, F. (2015). Studium Generale. Nemzeti Kulturális Alap. Szegedi Tudományegyetem (University of Szeged), (pp. 173-179). (in Hungarian).

Makra, L., Ionel, I., Csépe, Z., Matyasovszky, I., Lontis, N., Popescu, F., & Sümeghy, Z. (2013). Characterizing and evaluating the role of different transport modes on urban PM10 levels in two European cities using 3D clusters of backward trajectories. Science of the Total Environment, 458–460, 36–46. https://doi:10.1016/j.scitotenv.2013.04.021

Makra, L., Matyasovszky, I., Tusnády, G., Wang, Y. Q., Csépe, Z., Bozóki, Z., ... & Thibaudon, M. (2016). Biogeographical estimates of allergenic pollen transport over regional scales: common ragweed and Szeged, Hungary as a test case. Agricultural and Forest Meteorology, 221, 94–110. https://doi:10.1016/j.agrformet.2016.02.006

Matyasovszky, I., Makra, L., Bálint, B., Guba, Z., & Sümeghy, Z. (2011). Multivariate analysis of respiratory problems and their connection with meteorological parameters and the main biological and chemical air pollutants. Atmospheric Environment, 45, 4152–4159. https://doi:10.1016/j.atmosenv.2011.05.024

Matyasovszky, I., Makra, L., Csépe, Z., Sümeghy, Z., Deák, Á. J., Pál-Molnár, E., & Tusnády, G. (2015). Plants remember past weather: a study for atmospheric pollen concentrations of Ambrosia, Poaceae and Populus. Theoretical and Applied Climatology, 122(1), 181–193. https://doi:10.1007/s00704-014-1280-2

Ochocka, J. R., & Piotrowski, A. (2002). Biologically active compounds from European mistletoe (Viscum album L.). Canadian Journal of Plant Pathology, 24(1), 21–28. https://doi:10.1080/07060660109506966

Sharon, N. (1984). Carbohydrates as recognition determinants in phagocytosis and in lectin-mediated killing of target cells. Biology of the Cell, 51, 239–246.

Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144–158.

Steiner, R. (1994). Anthroposophische Menschener-kenntnis und Medizin. GA 319, 3rd lecture, London, 3. September 1923. Dornach, Rudolf Steiner Verlag (in German).

Svirbelf, J. L., & Szent-Gyorgyi, A. (1932). The Chemical Nature of Vitamin C. April 25th, 1932. Part of the National Library of Medicine collection. Accessed March 2021.

Szepessy, I. (1977). Növénybetegségek. Mezőgazdasági Kiadó, Budapest (99 p.) (in Hungarian).

Tukey, J. W. (1953). The problem of multiple comparisons. Unpublished manuscript. In: H.I. Braun (ed.). The Collected Works of John W Tukey, VIII. Multiple Comparisons: Chapman and Hall, New York (pp. 1–300).

Rácz, G. (2004). Az orvosi antropozófiától a homeopátiáig. Természetgyógyász Magazin, 16(1),

Varga, I. (2013). A fehér fagyöngy (Viscum album) magyarországi elterjedése és egyik kórokozója, a Phaeobotryosphaeria visci tulajdonságainak feltárása a biológiai védekezés szempontjából. PhD Dissertation, Pannon Egyetem Georgikon Kar (Pannon University, Georgikon Faculty), Keszthely (in Hungarian)

Vicas, S. I., Rugina, D., & Socaciu, C. (2012). Antioxidant Activity of European Mistletoe (Viscum album). In (ed. Rao, V.). Phytochemicals as Nutraceuticals – Global Approaches to Their Role in Nutrition and Health. IntechOpen (pp. 115–134). https://doi:10.5772/26845

Ziska, P., & Franz, H. (1985). Determination of lectin contents in commercial mistletoe prepa-rations for cancer therapy using the ELISA technique. In Bog Hansen, T.C., & Breborowicz, J. (Eds.) Lectins. Walter de Gruyter & Co press, Berlin (pp. 473–480).

Zuber, D. (2004). Biological flora of Central Europe: Viscum album L. Flora, (199), 181–203. https://doi:10.1078/0367-2530-00147