Content of sugar, titrated acids and biologically active substances in blackberries grown in the forest-steppe of Ukraine


Authors: Liudmyla Shevchuk, Igor Hrynyk, Liudmyla Levchuk, Svitlana Babenko and Roman Hrynyk

Volume/Issue: Volume 26: Issue 1

Published online: 23 May 2023

Pages: 1 - 8



For the first time was assessed the quality of fruits of four varieties of American blackberries and one of Swiss and Serbian selection,grown in the Forest-Steppe of Ukraine. The limits of variation of fruit mass, content of dry soluble substances, sugars, titratedacids, ascorbic acid, polyphenols and anthocyanins were established. The mass of blackberries varied within a minimum of 6.6 gof Asterina variety and a maximum of 8.2 g – Chester Thornless, the amount of soluble dry substances varied in the range of 9.4(Cacanska Bestrna) – 15.1% (Heaven Can Wait), and sugars from 7.82 to 12.72% Kiowa and Chester Thornless varieties. The highestcontent of bioactive substances, in particular ascorbic acid, was accumulated by fruits of Kiowa and Heaven Can Wait varieties, thelast of these, among the studied varieties, had the highest amount of polyphenolic substances 845 mg.100 g-1, variability of whichwas very low, corresponding to 8%. According to the look of the fruit, and in particular its mass, as well as taste, ratio of sugar toacid, there were highlighted varieties that have the prospect of widespread cultivation in industrial plantations, such as ChesterThornless and Chief Joseph. In order to conduct the selection process for the creation of varieties, whose fruits will have excellentmarketable, consumer and preventive qualities (apart from the above-mentioned varieties) should be also involved with others,namely Heaven Can Wait and Kiowa.

Keywords: Rubus fruticosus L., mass, soluble solids, polyphenolic substances, anthocyanins



Acosta-Montoya, Ó., Vaillant, F., Cozzano, S., Mertz, C., Pérez, A. M., & Castro, M. V. (2010). Phenolic content and antioxidant capacity of tropical highland blackberry (Rubus adenotrichus Schltdl.) during three edible maturity stages. Food Chemistry, 119(4), 1497–1501.

Ali, L., Svensson, B., Alsanius, B. W., & Olsson, M. E. (2011). Late season harvest and storage of Rubus berries – Major antioxidant and sugar levels. Scientia Horticulturae, 129(3), 376–381.

Briguglio, G., Costa, C., Pollicino, M., Giambò, F., Catania, S., & Fenga, C. (2020). Polyphenols in cancer prevention: New insights (Review). International Journal of Functional Nutrition, 1(2), 1–1.

Callahan, A. M. (2003). Breeding for fruit quality. Acta Horticulturae, 622, 295–302.

Caproni, C. M., Curi, P. N., Moura, P. H. A., Pio, R., Gonçalves, E. D., & Pasqual, M. (2016). Blackberry and redberry production in crop and intercrop in Pouso Alegre, southern Minas Gerais, Brazil. Ciência Rural, 46(10), 1723–1728.

Carl, E. S. (1999). Preharvest factors affecting postharvest texture. Postharvest Biology and Technology, 15(3), 249–254.

Cechinel-Filho, V. (2012). Plant bioactives and drug discovery: principles, practice, and perspectives. John Wiley & Sons.

Cháirez-Ramírez, M. H., de la Cruz-López, K. G., & García-Carrancá, A. (2021). Polyphenols as antitumor agents targeting key players in cancer-driving signaling pathways. Frontiers in Pharmacology, 12, 710304.

Cho, M. J., Howard, L. R., Prior, R. L., & Clark, J. R. (2005). Flavonol glycosides and antioxidant capacity of various blackberry and blueberry genotypes determined by high-performance liquid chromatography/mass spectrometry. Journal of the Science of Food and Agriculture, 85, 2149-2158.

Croge, C. P., Cuquel, F. L., Pintro, P. T. M., Biasi, L. A., & de Bona, C. M. (2019). Antioxidant Capacity and Polyphenolic Compounds of Blackberries Produced in Different Climates. HortScience, 54(12), 2209-2213.

Garcia-Seco, D., Zhang, Y., Gutierrez-Mañero, F. J., Martin, C., & Ramos-Solano, B. (2015). Application of Pseudomonas fluorescens to Blackberry under Field Conditions Improves Fruit Quality by Modifying Flavonoid Metabolism. Plos One, 10(11), e0142639.

Giusti, M. M., & Wrolstad, R. E. (2001). Characterization and measurement of anthocyanins by UV-visible spectroscopy. Current protocols in food analytical chemistry, (1), F1–2.

Guedes, M. N. S., de Abreu, C. M. P., Maro, L. A. C., Pio, R., de Abreu, J. R., & de Oliveira, J. O. (2013). Chemical characterization and mineral levels in the fruits of blackberry cultivars grown in a tropical climate at an elevation. Acta Scientiarum Agronomy, 35(2), 191–196.

Guedes, M. N. S., Maro, L. A. C., Abreu, C. M. P., Pio, R. & Patto, L. S. (2014). Chemical composition, bioactive compounds and genetic dissimilarity among cultivars blackberry (Rubus spp.) cultivated in South Minas Gerais. Revista Brasileira de Fruticultura, 36, 206–213.

Jazić, M. R., Vulić, J. J., Kukrić, Z. Z., Topalić-Trivunović, L. N., & Savić, A. v. (2018). Chemical composition, biological potentials and antimicrobial activity of wild and cultivated blackberries. Acta Periodica Technologica, (49), 65–79.

Kiss, A. K., & Piwowarski, J. P. (2018). Ellagitannins, Gallotannins and their Metabolites-The Contribution to the Anti-Inflammatory Effect of Food Products and Medicinal Plants. Current Medicinal Chemistry, 25(37), 4946–4967.

Kolniak-Ostek, J., Kucharska, A. Z., Sokół-Łętowska, A., & Fecka, I. (2015). Characterization of Phenolic Compounds of Thorny and Thornless Blackberries. Journal of Agricultural and Food Chemistry, 63(11), 3012–3021.

Kondratenko, P. V., Shevchuk, L. M., Levchuk, L. M. (2008). Methods for assessing the quality of fruit and berry products. Kyiv: SPD Zhyteliev S.I., 79.

Lykins, S., Scammon, K., Lawrence, B. T., & Melgar, J. C. (2021). Photosynthetic Light Response of Floricane Leaves of Erect Blackberry Cultivars from Fruit Development into the Postharvest Period. HortScience, 56(3), 347–351.

Mikulic-Petkovsek, M., Schmitzer, V., Slatnar, A., Stampar, F., & Veberic, R. (2012). Composition of Sugars, Organic Acids, and Total Phenolics in 25 Wild or Cultivated Berry Species. Journal of Food Science, 77(10), 1064–1070.

Milivojević, J., Maksimović, V., Nikolić, M., Bogdanović, J., Maletić, R., & Milatović, D. (2011). Chemical and antioxidant properties of cultivated and wild fragaria and rubus berries. Journal of Food Quality, 34(1), 1–9.

Moyer, R. A., Hummer, K. E., Finn, C. E., Frei, B., & Wrolstad, R. E. (2002). Anthocyanins, phenolics, and antioxidant capacity in diverse small fruits: Vaccinium, Rubus, and Ribes. Journal of Agricultural and Food Chemistry, 50(3), 519–525.

Mullen, W., McGinn, J., Lean, M. E. J., MacLean, M. R., Gardner, P., Duthie, G. G., Yokota, T., & Crozier, A. (2002). Ellagitannins, flavonoids, and other phenolics in red raspberries and their contribution to antioxidant capacity and vasorelaxation properties. Journal of Agricultural and Food Chemistry, 50(18), 5191–5196.

Pantelidis, G. E., Vasilakakis, M., Manganaris, G. A., & Diamantidis, G. (2007). Antioxidant capacity, phenol, anthocyanin and ascorbic acid contents in raspberries, blackberries, red currants, gooseberries and Cornelian cherries. Food Chemistry, 102(3), 777–783.

Parmenter, B. H., Croft, K. D., Hodgson, J. M., Dalgaard, F., Bondonno, C. P., Lewis, J. R., Cassidy, A., Scalbert, A., & Bondonno, N. P. (2020). An overview and update on the epidemiology of flavonoid intake and cardiovascular disease risk. Food & Function, 11(8), 6777–6806.

Ponder, A., Świetlikowska, K., Hallmann, E. (2017). The qualitative evaluation of the fruit of individual cultivars Rubus taking into account their usefulness to organic farming. Journal of Research and Applications in Agricultural Engineering, 62(4), 99–102.

Shevchuk, L. M., Grynyk, I. v, Levchuk, L. M., Yareshcenko, O. M., Tereshcenko, Y. Y., & Babenko, S. M. (2021a). Biochemical contents of highbush blueberry fruits grown in the Western Forest-Steppe of Ukraine. Agronomy Research, 19(1), 232–249.

Shevchuk, L., Grynyk, I., Levchuk, L., Babenko, S., Podpriatov, H., & Kondratenko, P. (2021b). Fruit Quality Indicators of Apple (Malus domestica Borkh.) Cultivars Bred in Ukraine. Journal of Horticultural Research, 29(2), 95–106.

Souza, V. R., Pereira, P. A. P., da Silva, T. L. T., de Oliveira Lima, L. C., Pio, R., & Queiroz, F. (2014). Determination of the bioactive compounds, antioxidant activity and chemical composition of Brazilian blackberry, red raspberry, strawberry, blueberry and sweet cherry fruits. Food Chemistry, 156, 362–368.

Threlfall, R. T., Hines, O. S., Clark, J. R., Howard, L. R., Brownmiller, C. R., Segantini, D. M., & Lawless, L. J. R. (2016). Physiochemical and sensory attributes of fresh blackberries grown in the southeastern United States. HortScience, 51(11), 1351–1362.

Toshima, S., Hirano, T., & Kunitake, H. (2021). Comparison of anthocyanins, polyphenols, and antioxidant capacities among raspberry, blackberry, and Japanese wild Rubus species. Scientia Horticulturae, 285, 110204.

Veberic, R., Stampar, F., Schmitzer, V., Cunja, V., Zupan, A., Koron, D., & Mikulic-Petkovsek, M. (2014). Changes in the contents of anthocyanins and other compounds in blackberry fruits due to freezing and long-term frozen storage. Journal of Agricultural and Food Chemistry, 62(29), 6926–6935.

Vergara, M. F., Vargas, J., & Acuña, J. F. (2016). Características físicoquímicas de frutos de mora de Castilla (Rubus glaucus Benth.) provenientes de cuatro zonas productoras de Cundinamarca, Colombia. Agronomia Colombiana, 34(3), 336–345.

Vronska, L. V. (2018) Development of spectrophotometric method of flavonoids determination in bilberry shoots. Pharmaceutical Review, (4), 49–56.

Zorzi, M., Gai, F., Medana, C., Aigotti, R., Morello, S., & Peiretti, P. G. (2020). Bioactive Compounds and Antioxidant Capacity of Small Berries. Foods, 9(5), 623.

Žlabur, J. Š., Mikulec, N., Doždor, L., Duralija, B., Galić, A., & Voća, S. (2021). Preservation of Biologically Active Compounds and Nutritional Potential of Quick-Frozen Berry Fruits of the Genus Rubus. Processes, 9(11), 1940.