Antimicrobial effects of Rosemary essential oil with potential use in the preservation of fresh fruits and vegetables

PDF

Authors: Miroslava Kačániová, Lucia Galovičová, Marianna Schwarzová and Natália Čmiková

Volume/Issue: Volume 26: Issue 1

Published online: 23 May 2023

Pages: 28 - 34

DOI: https://doi.org/10.2478/ahr-2023-0005


Abstract

Different uses of Rosmarinus officinalis are known, and its volatile essential oil (EO) possess extensively investigated biologicalproperties, such as antioxidant, anti-inflammatory, antiproliferative, anticancer, antiviral, antimicrobial, hepatoprotective,neuroprotective, nephroprotective, antiulcer, and many others. The aim of our study was evaluating of antimicrobial activity ofR. officinalis essential oil in vapor phase on apples, pears, kohlrabi, and potatoes. Fruits and vegetables models were tested withGram-positive bacteria, Gram-negative bacteria, and yeasts. Together four bacterial strains (Salmonella enterica subsp. enterica,Yersinia enterocolitica, Enterococcus faecalis, Staphylococcus aureus subsp. aureus) and four yeasts (Candida albicans, C. glabrata,C. krusei, and C. tropicalis) were tested in situ analyses. The most effective influence has ROEO has the most effective influence onon apples model against bacteria Enterococcus faecalis, and C. glabrata, on pears model Salmonella enterica and C. glabrata, onpotatoes Yersinia enterocolitica, and C. glabrata, and on kohlrabi model Y. enterocolitica, and C. albicans. The most effective in allfood models was concentration 500 μL.L-1


Keywords: bacteria, yeasts, apple, pears, kohlrabi, potatoes, in situ antimicrobial activity

PDF

References

Al-Sereiti, M. R., Abu-Amer, K. M., & Sen, P. (1999). Pharmacology of rosemary (Rosmarinus officinalis Linn.) and its therapeutic potentials. Indian Journal of Experimental Biology, 37(2), 124–130.


Bajpai, V. K., Baek, K.-H., & Kang, S. C. (2012). Control of Salmonella in foods by using essential oils: A review. Food Research International, 45(2), 722–734. https://doi.org/10.1016/j.foodres.2011.04.052


Burr, T. J., Matteson, M. C., Smith, C. A., Corral-Garcia, M. R., & Huang, T.-C. (1996). Effectiveness of Bacteria and Yeasts from Apple Orchards as Biological Control Agents of Apple Scab. Biological Control, 6(2), 151–157. https://doi.org/10.1006/bcon.1996.0019


Cavalcanti, Y. W., Almeida, L. de F. D. de, & Padilha, W. W. N. (2011). Anti-adherent activity of Rosmarinus officinalis essential oil on Candida albicans: An SEM analysis. Revista Odonto Ciência, 26(2), 139–144. https://doi.org/10.1590/S1980-65232011000200008


Chifiriuc, C., Grumezescu, V., Grumezescu, A. M., Saviuc, C., Lazăr, V., & Andronescu, E. (2012). Hybrid magnetite nanoparticles/Rosmarinus officinalis essential oil nanobiosystem with antibiofilm activity. Nanoscale Research Letters, 7(1), 1–7. https://doi.org/10.1186/1556-276X-7-209


Clulow, S. A., Stewart, H. E., Dashwood, E. P., & Wastie, R. L. (1995). Tuber surface microorganisms influence the susceptibility of potato tubers to late blight. Annals of Applied Biology, 126(1), 33–43. https://doi.org/10.1111/j.1744-7348.1995.tb05001


Dowley, L. J., & O’Sullivan, E. (1991). Sporulation of Phytophthora infestans (Mont.) de Bary on the surface of diseased potatoes and tuber to tuber spread of infection during handling. Potato Research, 34(3), 295–296. https://doi.org/10.1007/BF02360502


Escalona, V. H., Aguayo, E., & Artès, F. (2005). Overall Quality Throughout Shelf Life of Minimally Fresh Processed Fennel. Journal of Food Science, 70(1), S13–S17. https://doi.org/10.1111/j.1365-2621.2005.tb09057.x


Escalona, V. H., Aguayo, E., & Artés, F. (2006). Metabolic activity and quality changes of whole and fresh-cut kohlrabi (Brassica oleracea L. gongylodes group) stored under controlled atmospheres. Postharvest Biology and Technology, 41(2), 181–190. https://doi.org/10.1016/j.postharvbio.2006.04.001


Gachkar, L., Yadegari, D., Rezaei, M., Taghizadeh, M., Astaneh, S., & Rasooli, I. (2007). Chemical and biological characteristics of Cuminum cyminum and Rosmarinus officinalis essential oils. Food Chemistry, 102(3), 898–904. https://doi.org/10.1016/j.foodchem.2006.06.035


Garcia-Mazcorro, J. F., Pedreschi, R., Yuan, J., Kawas, J. R., Chew, B., Dowd, S. E., & Noratto, G. (2019). Apple consumption is associated with a distinctive microbiota, proteomics and metabolomics profile in the gut of Dawley Sprague rats fed a high-fat diet. PLOS ONE, 14(3), e0212586. https://doi.org/10.1371/journal.pone.0212586


Gudmestad, N. C., Taylor, R. J., & Pasche, J. S. (2007). Management of soilborne diseases of potato. Australasian Plant Pathology, 36(2), 109–115. https://doi.org/10.1071/AP06091


He, Y.-H., Isono, S., Shibuya, M., Tsuji, M., Adkar Purushothama, C.-R., Tanaka, K., & Sano, T. (2012). Oligo-DNA Custom Macroarray for Monitoring Major Pathogenic and Non-Pathogenic Fungi and Bacteria in the Phyllosphere of Apple Trees. PLOS ONE, 7(3), e34249. https://doi.org/10.1371/journal.pone.0034249


Hernández, M. D., Sotomayor, J. A., Hernández, Á., & Jordán, M. J. (2016). Rosemary (Rosmarinus officinalis L.) oils. In Essential oils in food preservation, flavor and safety (pp. 677–688). Academic Press. https://doi.org/10.1016/B978-0-12-416641-7.00077-8


Ivanovic, J., Misic, D., Zizovic, I., & Ristic, M. (2012). In vitro control of multiplication of some food-associated bacteria by thyme, rosemary and sage isolates. Food Control, 25(1), 110–116. https://doi.org/10.1016/j.foodcont.2011.10.019


Jordán, M. J., Lax, V., Rota, M. C., Lorán, S., & Sotomayor, J. A. (2013). Effect of the phenological stage on the chemical composition, and antimicrobial and antioxidant properties of Rosmarinus officinalis L essential oil and its polyphenolic extract. Industrial Crops and Products, 48, 144–152. https://doi.org/10.1016/j.indcrop.2013.04.031


Kačániová, M., Galovičová, L., Borotová, P., Vukovic, N. L., Vukic, M., Kunová, S., Hanus, P., Bakay, L., Zagrobelna, E., Kluz, M., & Kowalczewski, P. Ł. (2022). Assessment of Ocimum basilicum Essential Oil Anti-Insect Activity and Antimicrobial Protection in Fruit and Vegetable Quality. Plants, 11(8), 1030. https://doi.org/10.3390/plants11081030


Koutsos, A., Lima, M., Conterno, L., Gasperotti, M., Bianchi, M., Fava, F., Vrhovsek, U., Lovegrove, J., & Tuohy, K. (2017). Effects of Commercial Apple Varieties on Human Gut Microbiota Composition and Metabolic Output Using an In Vitro Colonic Model. Nutrients, 9(6), 533. https://doi.org/10.3390/nu9060533


Lemos, M. F., Lemos, M. F., Pacheco, H. P., Endringer, D. C., & Scherer, R. (2015). Seasonality modifies rosemary’s composition and biological activity. Industrial Crops and Products, 70, 41–47. https://doi.org/10.1016/j.indcrop.2015.02.062


Liu, M., Liu, Y., Cao, M.-J., Liu, G.-M., Chen, Q., Sun, L., & Chen, H. (2017). Antibacterial activity and mechanisms of depolymerized fucoidans isolated from Laminaria japonica. Carbohydrate Polymers, 172, 294–305. https://doi.org/10.1016/j.carbpol.2017.05.060


Lo Presti, M., Ragusa, S., Trozzi, A., Dugo, P., Visinoni, F., Fazio, A., Dugo, G., & Mondello, L. (2005). A comparison between different techniques for the isolation of rosemary essential oil. Journal of Separation Science, 28(3), 273–280. https://doi.org/10.1002/jssc.200400037


Loria, R., Bukhalid, R. A., Fry, B. A., & King, R. R. (1997). Plant pathogenicity in the genus Streptomyces. Plant Disease, 81(8), 836-846. https://doi.org/10.1094/PDIS.1997.81.8.836


Lottmann, J., Heuer, H., Smalla, K., & Berg, G. (1999). Influence of transgenic T4-lysozyme-producing potato plants on potentially beneficial plant-associated bacteria. FEMS Microbiology Ecology, 29(4), 365–377. https://doi.org/10.1111/j.1574-6941.1999.tb00627.x


Marinas, I., Grumezescu, A., Saviuc, C., Chifiriuc, M., Mihaiescu, D., & Lazar, V. (2012). Rosmarinus officinalis essential oil as antibiotic potentiator agains Staphylococcus aureus. Biointerface Research in Applied Chemistry, 2, 271–276.


Martín-Belloso, O., Soliva-Fortuny, R., & Oms-Oliu, G. (2006). Fresh-cut fruits, Handbook of Fruits and Fruit Processing (Y.H. Hui (Ed.). Blackwell Publishing.


Mohammed, M. J., Anand, U., Altemimi, A. B., Tripathi, V., Guo, Y., & Pratap-Singh, A. (2021). Phenolic Composition, Antioxidant Capacity and Antibacterial Activity of White Wormwood (Artemisia herba-alba). Plants, 10(1), 164. https://doi.org/10.3390/plants10010164


Nguyen-the, C., & Carlin, F. (1994). The microbiology of minimally processed fresh fruits and vegetables. Critical Reviews in Food Science and Nutrition, 34(4), 371–401. https://doi.org/10.1080/10408399409527668


Oluwatuyi, M., Kaatz, G. W., & Gibbons, S. (2004). Antibacterial and resistance modifying activity of Rosmarinus officinalis. Phytochemistry, 65(24), 3249–3254. https://doi.org/10.1016/j.phytochem.2004.10.009


Özcan, M. M., & Chalchat, J.-C. (2008). Chemical composition and antifungal activity of rosemary Rosmarinus officinalis oil from Turkey. International Journal of Food Sciences and Nutrition, 59(7–8), 691–698. https://doi.org/10.1080/09637480701777944


Pérombelon, M. C. M. (2002). Potato diseases caused by soft rot erwinias: An overview of pathogenesis. Plant Pathology, 51(1), 1–12. https://doi.org/10.1046/j.0032-0862.2001.Shorttitle.doc.x


Pinela, J., Prieto, M. A., Barreiro, M. F., Carvalho, A. M., Oliveira, M. B. P. P., Vázquez, J. A., & Ferreira, I. C. F. R. (2016). Optimization of microwave-assisted extraction of hydrophilic and lipophilic antioxidants from a surplus tomato crop by response surface methodology. Food and Bioproducts Processing, 98, 283–298. https://doi.org/10.1016/j.fbp.2016.02.002


Pusey, P. L., Stockwell, V. O., & Mazzola, M. (2009). Epiphytic Bacteria and Yeasts on Apple Blossoms and Their Potential as Antagonists of Erwinia amylovora. Phytopathology®, 99(5), 571–581. https://doi.org/10.1094/PHYTO-99-5-0571


Rasooli, I. (2008). Antimycotoxigenic characteristics of Rosmarinus officinalis and Trachyspermum copticum L. essential oils. International Journal of Food Microbiology, 122(1-2), 135–139. https://doi.org/10.1016/j.ijfoodmicro.2007.11.048


Sanz, Y., Olivares, M., Moya-Pérez, Á., & Agostoni, C. (2015). Understanding the role of gut microbiome in metabolic disease risk. Pediatric Research, 77(1–2), 236–244. https://doi.org/10.1038/pr.2014.170


Shoji, T., & Miura, T. (2014). Apple Polyphenols in Cancer Prevention. In Polyphenols in Human Health and Disease (pp. 1373–1383). Academic Press. https://doi.org/10.1016/B978-0-12-398456-2.00104-3


Shtriker, M. G., Hahn, M., Taieb, E., Nyska, A., Moallem, U., Tirosh, O., & Madar, Z. (2018). Fenugreek galactomannan and citrus pectin improve several parameters associated with glucose metabolism and modulate gut microbiota in mice. Nutrition, 46, 134–142.e3. https://doi.org/10.1016/j.nut.2017.07.012


Siejak, P., Smułek, W., Fathordobady, F., Grygier, A., Baranowska, H. M., Rudzińska, M., Masewicz, Ł., Jarzębska, M., Nowakowski, P. T., Makiej, A., Kazemian, P., Drobnik, P., Stachowiak, B., Jarzębski, M., & Pratap-Singh, A. (2021). Multidisciplinary Studies of Folk Medicine “Five Thieves’ Oil” (Olejek Pięciu Złodziei) Components. Molecules, 26(10), 2931. https://doi.org/10.3390/molecules26102931


Stockwell, V. O., Johnson, K. B., Sugar, D., & Loper, J. E. (2010). Control of Fire Blight by Pseudomonas fluorescens A506 and Pantoea vagans C9-1. Applied as Single Strains and Mixed Inocula. Phytopathology®, 100(12), 1330–1339. https://doi.org/10.1094/PHYTO-03-10-0097


Sturz, A. V., Christie, B R., Matheson, B. G., Arsenault, W. J., & Buchanan, N. A. (1999). Endophytic bacterial communities in the periderm of potato tubers and their potential to improve resistance to soil-borne plant pathogens. Plant Pathology, 48(3), 360–369. https://doi.org/10.1046/j.1365-3059.1999.00351.x


Tavassoli, K.S., Mousavi, S.M., Emam-Djomeh, Z. & Razavi, S.H. (2011). Chemical composition and evaluation of antimicrobial properties of Rosmarinus officinalis L. essential oil. African Journal of Biotechnology, 10(63), 13895–13899. https://doi.org/10.5897/AJB11.788


Yashiro, E., Spear, R. N., & McManus, P. S. (2011). Culture-dependent and culture-independent assessment of bacteria in the apple phyllosphere: Apple phyllosphere bacteria. Journal of Applied Microbiology, 110(5), 1284–1296. https://doi.org/10.1111/j.1365-2672.2011.04975.x


Zhu, P. C. (Ed.). (2007). New Biocides Development: The Combined Approach of Chemistry and Microbiology (vol. 967). American Chemical Society. https://doi.org/10.1021/bk-2007-0967