Use of Mentha spicata essential oil for prolonging postharvest life of fresh vegetables

PDF

Authors: Natália Čmiková, Lucia Galovičová, Marianna Schwarzová and Miroslava Kačániová

Volume/Issue: Volume 26: Issue 1

Published online: 23 May 2023

Pages: 35 - 42

DOI: https://doi.org/10.2478/ahr-2023-0006


Abstract

Mentha spicata L. (Lamiaceae), commonly called spearmint, is cultivated worldwide for its remarkable aroma and commercial value.Antimicrobial effectiveness of essential oils against many foodborne microorganisms when applied directly has been extensivelydemonstrated. The antimicrobial potential of Mentha spicata essential oil in the vapor phase against different microorganisms(Salmonella enterica subsp. enterica CCM 3807, Yersinia enterocolitica CCM 5671, Enterococcus faecalis CCM 4224, Staphylococcusaureus subsp. aureus CCM 2461, Candida albicans CCM 8186, C. glabrata CCM 8270, C. krusei CCM 8271, C. tropicalis CCM 8223)was determined by in situ method on vegetable model (carrot, radish, potatoes, and kohlrabi). The vapor phase was determinedfor seven days in Petri dishes with four concentrations (500, 250, 125, 62.5 μL.L -1) of M. spicata essential oil on the food models.M. spicata essential oil against Yersinia enterocolitica on carrot, potato, and kohlrabi model in concentration of 500 μL.L-1 was themost effective. M. spicata essential oil shows good potential as preservative and shelf-life prolongation of vegetables.


Keywords: microorganisms, Mentha spicata, Candida, fresh vegetables, vapor phase, shelf-life prolongation

PDF

References

Agrios, G. N. (2005). Plant Pathology. (5th ed.), Elsevier Academic Press, Amsterdam, 26–27, 398–401.


Aguilar-González, A. E., Palou, E., & López-Malo, A. (2015). Antifungal activity of essential oils of clove (Syzygium aromaticum) and/or mustard (Brassica nigra) in vapor phase against gray mold (Botrytis cinerea) in strawberries. Innovative Food Science and Emerging Technologies, 32, 181–185. https://doi.org/10.1016/j.ifset.2015.09.003


Aguilar-González, A. E., Palou, E., & López-Malo, A. (2017). Response of Aspergillus niger Inoculated on Tomatoes Exposed to Vapor Phase Mustard Essential Oil for Short or Long Periods and Sensory Evaluation of Treated Tomatoes. Journal of Food Quality, 2017, 1–7. https://doi.org/10.1155/2017/4067856


Bhat, R., Alias, A. K., & Paliyath, G. (2012). Progress in Food Preservation. John Wiley & Sons (630 p.).


Chang, K. F., Ahmed, H. U., Hwang, S. F., Gossen, B. D., Strelkov, S. E., Blade, S. F., & Turnbull, G. D. (2007). Sensitivity of field populations of Ascochyta rabiei to chlorothalonil, mancozeb and Pyraclostrobin fungicides and effect of strobilurin fungicides on the progress of Ascochyta blight of chickpea. Canadian Journal of Plant Science, 87(4), 937–944. https://doi.org/10.4141/CJPS07019


Cuppels, D. A., & Elmhirst, J. (1999). Disease Development and Changes in the Natural Pseudomonas syringae pv. tomato Populations on Field Tomato Plants. Plant Disease, 83(8), 759–764. https://doi.org/10.1094/PDIS.1999.83.8.759


Da Cruz Cabral, L., Fernández Pinto, V., & Patriarca, A. (2013). Application of plant derived compounds to control fungal spoilage and mycotoxin production in foods. International Journal of Food Microbiology, 166(1), 1–14. https://doi.org/10.1016/j.ijfoodmicro.2013.05.026


Du, W.-X., Olsen, C. W., Avena-Bustillos, R. J., McHugh, T. H., Levin, C. E., Mandrell, R., & Friedman, M. (2009). Antibacterial Effects of Allspice, Garlic, and Oregano Essential Oils in Tomato Films Determined by Overlay and Vapor-Phase Methods. Journal of Food Science, 74(7), M390–M397. https://doi.org/10.1111/j.1750-3841.2009.01289.x


Edris, A. E., & Farrag, E. S. (2003). Antifungal activity of peppermint and sweet basil essential oils and their major aroma constituents on some plant pathogenic fungi from the vapor phase. Food/Nahrung, 47(2), 117–121. https://doi.org/10.1002/food.200390021


Goudjil, M., Segni, L., Souad, Z., Hammoya, F., Messaoud Bachagha, B., Mehani, M., & Bencheikh, S. E. (2016). Bioactivity of Laurus Nobilis and Mentha piperita essential oils on some phytopathogenic fungi (in vitro assay). Journal of Materials and Environmental Science, 7, 4525-4533.


Gutierrez, J., Barry-Ryan, C., & Bourke, P. (2008). The antimicrobial efficacy of plant essential oil combinations and interactions with food ingredients. International Journal of Food Microbiology, 124(1), 91–97. https://doi.org/10.1016/j.ijfoodmicro.2008.02.028


Işcan, G., Kïrïmer, N., Kürkcüoğlu, M., Hüsnü Can Başer, & Demïrcï, F. (2002). Antimicrobial Screening of Mentha piperita Essential Oils. Journal of Agricultural and Food Chemistry, 50(14), 3943–3946. https://doi.org/10.1021/jf011476k


Jeyakumar, E., Lawrence, R., & Pal, T. (2011). Comparative evaluation in the efficacy of peppermint (Mentha piperita) oil with standards antibiotics against selected bacterial pathogens. Asian Pacific Journal of Tropical Biomedicine, 1(2), S253–S257. https://doi.org/10.1016/S2221-1691(11)60165-2


Kačániová, M., Galovičová, L., Borotová, P., Vukovic, N. L., Vukic, M., Kunová, S., Hanus, P., Bakay, L., Zagrobelna, E., Kluz, M., & Kowalczewski, P. Ł. (2022). Assessment of Ocimum basilicum Essential Oil Anti-Insect Activity and Antimicrobial Protection in Fruit and Vegetable Quality. Plants, 11(8), 1030. https://doi.org/10.3390/plants11081030


Lee, G., Kim, Y., Kim, H., Beuchat, L. R., & Ryu, J.-H. (2018). Antimicrobial activities of gaseous essential oils against Listeria monocytogenes on a laboratory medium and radish sprouts. International Journal of Food Microbiology, 265, 49–54. https://doi.org/10.1016/j.ijfoodmicro.2017.11.001


Louws, F. J., Wilson, M., Campbell, H. L., Cuppels, D. A., Jones, J. B., Shoemaker, P. B., Sahin, F., & Miller, S. A. (2001). Field Control of Bacterial Spot and Bacterial Speck of Tomato Using a Plant Activator. Plant Disease, 85(5), 481–488. https://doi.org/10.1094/PDIS.2001.85.5.481


Moreira, M. R., Ponce, A. G., del Valle, C. E., & Roura, S. I. (2005). Inhibitory parameters of essential oils to reduce a foodborne pathogen. LWT - Food Science and Technology, 38(5), 565–570. https://doi.org/10.1016/j.lwt.2004.07.012


Murbach Teles Andrade, B. F., Nunes Barbosa, L., da Silva Probst, I., & Fernandes Júnior, A. (2014). Antimicrobial activity of essential oils. Journal of Essential Oil Research, 26(1), 34–40. https://doi.org/10.1080/10412905.2013.860409


Nadjib, B. M., Amine, F. M., Abdelkrim, K., Fairouz, S., & Maamar, M. (2014). Liquid and vapour phase antibacterial activity of Eucalyptus globulus essential oil = susceptibility of selected respiratory tract pathogens. American Journal of Infectious Diseases, 10(3), 105–117. https://doi.org/10.3844/ajidsp.2014.105.117


Nielsen, P. V., & Rios, R. (2000). Inhibition of fungal growth on bread by volatile components from spices and herbs, and the possible application in active packaging, with special emphasis on mustard essential oil. International Journal of Food Microbiology, 60(2–3), 219–229. https://doi.org/10.1016/S0168-1605(00)00343-3


Oussalah, M., Caillet, S., Saucier, L., & Lacroix, M. (2006). Antimicrobial effects of selected plant essential oils on the growth of a Pseudomonas putida strain isolated from meat. Meat Science, 73(2), 236–244. https://doi.org/10.1016/j.meatsci.2005.11.019


Pandey, A. K., Kumar, P., Singh, P., Tripathi, N. N., & Bajpai, V. K. (2017). Essential Oils: Sources of Antimicrobials and Food Preservatives. Frontiers in Microbiology, 7. https://doi.org/10.3389/fmicb.2016.02161


Paranagama, P. A., Abeysekera, K. H. T., Abeywickrama, K., & Nugaliyadde, L. (2003). Fungicidal and anti-aflatoxigenic effects of the essential oil of Cymbopogon citratus (DC.) Stapf. (Lemongrass) against Aspergillus flavus Link. Isolated from stored rice. Letters in Applied Microbiology, 37(1), 86–90. https://doi.org/10.1046/j.1472-765X.2003.01351.x


Perricone, M., Arace, E., Corbo, M. R., Sinigaglia, M., & Bevilacqua, A. (2015). Bioactivity of essential oils: A review on their interaction with food components. Frontiers in Microbiology, 6. https://www.frontiersin.org/articles/10.3389/fmicb.2015.00076


Phillips, C. A., Laird, K., & Allen, S. C. (2012). The use of Citri-VTM® – An antimicrobial citrus essential oil vapour for the control of Penicillium chrysogenum, Aspergillus niger and Alternaria alternata in vitro and on food. Food Research International, 47(2), 310–314. https://doi.org/10.1016/j.foodres.2011.07.035


Price, P. P., Purvis, M. A., Cai, G., Padgett, G. B., Robertson, C. L., Schneider, R. W., & Albu, S. (2015). Fungicide Resistance in Cercospora kikuchii, a Soybean Pathogen. Plant Disease, 99(11), 1596-1603. https://doi.org/10.1094/PDIS-07-14-0782-RE


Rasooli, I., & Rezaei, M. B. (2002). Bioactivity and Chemical Properties of Essential Oils from Zataria multiflora Boiss and Mentha longifolia (L.) Huds. Journal of Essential Oil Research, 14(2), 141–146. https://doi.org/10.1080/10412905.2002.9699800


Regnier, T., Combrinck, S., & Du Plooy, W. (2010). Improvement of postharvest quality of subtropical fruits using Lippia scaberrima essential oil. Acta Horticulturae, 877, 1567–1573. https://doi.org/10.17660/ActaHortic.2010.877.216


Rhouma, A., Ben Daoud, H., Ghanmi, S., ben Salah, H., Romdhane, M., & Demak, M. (2009). Antimicrobial Activities of Leaf Extracts of Pistacia and Schinus Species Against Some Plant Pathogenic Fungi and Bacteria. Journal of Plant Pathology, 91(2), 339-345. https://www.jstor.org/stable/41998628


Sacchetti, G., Maietti, S., Muzzoli, M., Scaglianti, M., Manfredini, S., Radice, M., & Bruni, R. (2005). Comparative evaluation of 11 essential oils of different origin as functional antioxidants, antiradicals and antimicrobials in foods. Food Chemistry, 91(4), 621-632. https://doi.org/10.1016/j.foodchem.2004.06.031


Serrano, M., Martínez-Romero, D., Castillo, S., Guillén, F., & Valero, D. (2005). The use of natural antifungal compounds improves the beneficial effect of MAP in sweet cherry storage. Innovative Food Science and Emerging Technologies, 6(1), 115–123. https://doi.org/10.1016/j.ifset.2004.09.001


Shao, X., Wang, H., Xu, F., & Cheng, S. (2013). Effects and possible mechanisms of tea tree oil vapor treatment on the main disease in postharvest strawberry fruit. Postharvest Biology and Technology, 77, 94–101. https://doi.org/10.1016/j.postharvbio.2012.11.010


Sharifi-Rad, M., Nazaruk, J., Polito, L., Morais-Braga, M. F. B., Rocha, J. E., Coutinho, H. D. M., Salehi, B., Tabanelli, G., Montanari, C., del Mar Contreras, M., Yousaf, Z., Setzer, W. N., Verma, D. R., Martorell, M., Sureda, A., & Sharifi-Rad, J. (2018). Matricaria genus as asource of antimicrobial agents: From farm to pharmacy and food applications. Microbiological Research, 215, 76–88. https://doi.org/10.1016/j.micres.2018.06.010


Singh, P., & Pandey, A. K. (2018). Prospective of Essential Oils of the Genus Mentha as Biopesticides: A Review. Frontiers in Plant Science, 9, 1295. https://doi.org/10.3389/fpls.2018.01295


Sivropoulou, A., Kokkini, S., Lanaras, T., & Arsenakis, M. (1995). Antimicrobial activity of mint essential oils. Journal of Agricultural and Food Chemistry, 43(9), 2384–2388. https://doi.org/10.1021/jf00057a013


Skandamis, P. N., & Nychas, G.-J. E. (2002). Preservation of fresh meat with active and modified atmosphere packaging conditions. International Journal of Food Microbiology, 79(1), 35–45. https://doi.org/10.1016/S0168-1605(02)00177-0


Soković, M., & van Griensven, L. J. L. D. (2006). Antimicrobial activity of essential oils and their components against the three major pathogens of the cultivated button mushroom, Agaricus bisporus. European Journal of Plant Pathology, 116(3), 211–224. https://doi.org/10.1007/s10658-006-9053-0


Sonker, N., Pandey, A. K., & Singh, P. (2015). Efficiency of Artemisia nilagirica (Clarke) Pamp. Essential oil as a mycotoxicant against postharvest mycobiota of table grapes: Artemisia nilagirica oil as a mycotoxicant for table grapes. Journal of the Science of Food and Agriculture, 95(9), 1932–1939. https://doi.org/10.1002/jsfa.6901


Tassou, C. C., Drosinos, E. H., & Nychas, G. J. E. (1995). Effects of essential oil from mint (Mentha piperita) on Salmonella enteritidis and Listeria monocytogenes in model food systems at 4° and 10°C. Journal of Applied Bacteriology, 78(6), 593–600. https://doi.org/10.1111/j.1365-2672.1995.tb03104.x


Teixeira, B., Marques, A., Ramos, C., Batista, I., Serrano, C., Matos, O., Neng, N. R., Nogueira, J. M. F., Saraiva, J. A., & Nunes, M. L. (2012). European pennyroyal (Mentha pulegium) from Portugal: Chemical composition of essential oil and antioxidant and antimicrobial properties of extracts and essential oil. Industrial Crops and Products, 36(1), 81–87. https://doi.org/10.1016/j.indcrop.2011.08.011


Vidhyasekaran, P. (2002). Bacterial Disease Resistance in Plants: Molecular Biology and Biotechnological Applications. CRC Press, 464 pp.


Xu, J., Zhou, F., Ji, B.-P., Pei, R.-S., & Xu, N. (2008). The antibacterial mechanism of carvacrol and thymol against Escherichia coli. Letters in Applied Microbiology, 47(3), 174–179. https://doi.org/10.1111/j.1472-765X.2008.02407.x


Yadav, S. R., Sandeep, K., & Anupam, D. (2006). Antifungal properties of essential oil of Mentha spicata L. var. MSS-5. Indian Journal of Crop Science, 1(2), 197–200. https://indianjournals.com/ijor.aspx?target=ijor:ijocs&volume=1&issue=1and2&article=045


Ziedan, E. S., & Farrag, E. (2008). Fumigation of peach fruits with essential oils to control postharvest decay. Research Journal of Agriculture and Biological Sciences, 4, 512–519.