Accumulation of Mn, Cu, and Zn in Flowers and Leaves of Catalpa bignonioides in an Urban Area Under Climate Change Conditions


Authors: Agnieszka Parzych and Aliaksandra Yurchak

Volume/Issue: Volume 27: Issue 1

Published online: 23 Apr 2024

Pages: 29 - 34



Green areas are an important part of the urban landscape. Trees produce oxygen, provide shade, maintain soil moisture, and reduce the amounts of toxic gases and dust in the air. Due to the changing climate, species characteristic of other climatic zones, e.g. Catalpa bignonioides, are planted in urban parks in Poland, mainly due to the attractive appearance of the leaves and flowers. The aim of the study was to assess the content of Mn, Cu, and Zn in flowers and leaves of C. bignonioides in the urban park and to determine the value of bioconcentration coefficients (BCF) of these metals. The obtained results indicate that the flowers and leaves of C. bignonioides accumulate lesser amounts of manganese, copper, and zinc. It is a consequence of the limited bioavailability of these components in soils, due to too high pH values resulting from alkalinization of urban soils. The values of bioconcentration coefficients (BCF <1) confirm the low accumulation of Mn, Cu, and Zn in both leaves and flowers of C. bignonioides, due to the limited mobility of manganese, copper, and zinc compounds in the soils of the urban park and the low impact of falling dusts, which are the carriers of the analyzed components.

Keywords: urban park, trees, pollutions, heavy metals, bioconcentration coefficients



Aksoy, A., Şahin, U., & Duman F. (2000). Robinia pseudoacacia L. as a possible biomonitor of heavy metal pollution in Kayseri. Turkish Journal of Botany, 24, 279–284.

Brtnický, M., Pecina, V., Hladký, J., Radziemska, M., Koudelkova, Z., Klimanek, M., Richtera, L., Adamcova, D., Elbl, J., Vasinova Galiov. M., Balakov, L., Kynický, J., Smolíkova, V., Houska, J., & Vaverkova M. D. (2019). Assessment of phytotoxicity, environmental and health risks of historical urban park soils. Chemosphere, 220, 678–686.\

Gratani, L., Crescente, M. F., & Varone, L. (2008). Long-term monitoring of metal pollution by urban trees. Atmospheric Environment, 42, 8273–8277.

Hrynyova, Y., & Kryshtop, E. (2021). Problemy zanieczyszczenia środowiska metalami ciężkimi i sposoby ich przezwyciężenia (Problems environmental pollution with heavy metals and methods overcoming them) . Inżynieria zarządzania przyrodą, 1(19), 111–119.

Islam, M. N., Rahman, K., Bahar, M. M., & Habib, M. A. (2012). Pollution attenuation by roadside greenbelt in and around urban areas. Urban Forestry and Urban Greening, 11, 460–464.

Kabata-Pendias, A., & Pendias, H. (1999). Biogeochemistry of trace elements. PWN.

Kabała, C., & Karczewska, A. (2017). Metodyka analiz laboratoryjnych gleb i roślin, Polska (Methodology of laboratory analyses of soils and plants). Uniwersytet Przyrodniczy we Wrocławiu. Instytut Nauk o Glebie i Ochrony Środowiska.

Kocić, K., Spasić, T., Urošević, M. A., Tomašević, M. (2014). Trees as natural barriers against heavy metal pollution and their role in the protection of cultural heritage. Journal of Cultural Heritage, 15(3), 227–233.

Kurbaniyazov, B. T., Saitova, A. K., Kholova Sh. A., Safarov, A. K., & Safarov K. S. (2021). Features of contamination of trees and shrubs with heavy metals in the conditions of Nukus. Psychology and Education, 58(2), 5733–5738.

Łaszewska, A., Kowol, J., Wiechuła, D., & Kwapuliński, J. (2007). Accumulation of metals in selected species of medicinal plants from the area of Beskid Śląski and Beskid Żywiecki. Problemy Ekologii, 11, 6, 285–291.

Li, Y., Wang S., Chen Q. (2019). Potential of thirteen urban greening plants to capture particulate matter on leaf surfaces across three levels of ambient atmospheric pollution. Int. J. Environ. Res. Public Health, 16(3), 402.

Monaci, F., Moni, F., Lonciotti, E., Grechi, D., & Bargagli, R. (2000). Biomonitoring of airborne metals in urban environments: new tracers of vehicle emission, in place of lead. Environmental Pollution, 107, 321–327.

Neverova, O. A, & Kolmogorova, E. Y. (2002). Phenological control of the state of woody plants and air pollution in Kemerovo. Proceedings of higher educational institutions. North Caucasian region. Natural Sciences (pp. 101–103).

Ostrowska, A., Gawliński, S., & Szczubiałka, Z. (1991). Methods of analysis and assessment of soil and plant properties. Instytut Ochrony Środowiska.

Öztürk, S., & Bozdoğan, E. (2014). Determinatıon of the perceived quality of urban life in new and traditional housing textures. Fresenius Environmental Bulletin, 23–10, 2415-2421.

Öztürk, S., & Bozdoğan, E. (2015). The contribution of urban trees on improving the air quality in an urban area. Fresenius Environmental Bulletin, 24 (5a), 1822–1829.

Parzych, A. (2022). Urban leaf litters as a potential compost component. J. Ecol. Eng., 23(4), 250–260.

Parzych, A., & Jonczak, J. 2014. Pine needles (Pinus sylvestris L.) as bioindicators in the assessment of urban environmental contamination with heavy metals. J. Ecol. Eng., 15, 3, 29–38.

Piczak, K., Lesniewicz, A., & Zyrnicki, W. 2003. Metal concentrations in deciduous tree leaves from urban areas in Poland. Environmental Monitoring and Assessment, 86, 273–287.

Sawidis, T., Breuste, J., Mitroviç, M., Pavlovic, P., & Tsigaridas, K. 2011. Trees as bioindicator of heavy metal pollution in three European cities. Environmental Pollution, 159, 3560–3570.

Wierzbicka, M. (2015). Ecotoxicology. Plants, soils, metals. Wyd. WUW.