Assessment of a Yield Prediction Method Based on Time Series Landsat 8 Data

PDF

Authors: Andrea Szabó, Odunayo David Adeniyi, János Tamás, Attila Nagy

Volume/Issue: Volume 24: Issue s1: Special Issue

Published online: 21 May 2021

Pages: 12-15

DOI: https://doi.org/10.2478/ahr-2021-0003


Abstract

The active biomass of cultivated plants and average yield decreases as a result of biotic and abiotic stress effect. The extent of the reduction can be quantified on the basis of remotely sensed data. The aim of this research is to evaluate the suitability of Landsat 8 data for a wheat yield estimation. We processed Landsat 8 recordings for the period 2013–2019 and generated NDVI data. Time series NDVI data were calibrated and validated with observed wheat yield averages. The agricultural plots around Karcag, Hungary, were our research area. The relation between Landsat NDVI data and yield was strongest and highest in the total biomass period (R2 = 0.53–0.54) and the estimation error based on RMSE is between 0.48–0.7 t.ha−1.


Keywords: Landsat 8, crop, yield prediction

PDF

References

Atzberger, C. (2013). Advances in remote sensing of agriculture: context description, existing operational monitoring systems and major information needs. Remote Sens., 5, 949–981.


Bolton, D. K., Friedl, M. A. (2013). Forecasting crop yield using remotely sensed vegetation indices and crop phenologymetrics. Agric. For. Meteorol., 173, 74–84.


Clement, S., Lassman, F., Barley, E., Evans-Lacko, S., Williams, P., Yamaguchi, S., Slade, M., Rüsch, N., Thornicroft, G. (2013). Mass media interventions for reducing mental health-related stigma (Review). The Cochrane Library, (7).


De la Casa, A., Ovando, G., Bressanini, L., Martínez, J., Díaz, G., Miranda, C. (2018). Soybean crop coverage estimation from NDVI images with different spatial resolution evaluate yield variability in a plot. ISPRS J. Photogramm. Remote Sens., 146, 531–547.


Dempewolf, J., Adusei, B., Becker-Reshef, I., Hansen, M., Potapov, P., Khan, A., Barker, B. (2014). WheatyieldforecastingforPunjabProvincefromvegetation index time series and historic crop statistics. Remote Sens., 6, 9653–9675. FAOSTAT (2018). website. http://www.fao.org/faostat/en/#data/QC/Query date: 2020. 05.


Ferencz, Cs., Bognár, P., Lichtenberge, J., Hamar, D., Tarcsai, GY., Timár, G., Molnár, G., Pásztor, Sz., Steinbach, P., Székely, B., Ferencz, O. E., Ferencz-Árkos, I. (2004). Crop yield estimation by satellite remote sensing. Int. J. Remote Sens., 25(20), 4113–4149.


Labus, M. P., Nielsen, G. A., Lawrence, R. L., Engel, R., Long, D. S. (2002). Wheat yield estimates using multi-temporal NDVI satellite imagery. International Journal of Remote sensing, 23(20), 4169-4180.


Marti, J., Bort, J., Slafer, G. A., Araus, J. L. (2007). Can wheat yield be assessed by early measurements of normalized difference vegetation index? Annals of Applied Biology, 150, 253–257.


Mkhabela, M. S., Bullock, P., Raj, S., Wang, S., Yang, Y. (2011). Crop yield forecasting on the Canadian Prairies using MODIS NDVI data. Agric. For. Meteorol., 151, 385–393.


Nagy, A., Fehér, J., Tamás, J. (2018).Wheat and maize yield forecasting for the Tisza river catchment using MODIS NDVI time series and reported crop statistics. Computers and Electronics in Agriculture, 151, 41–49.


Panda, S. S., Ames, D. P., Panigrahi, S. (2010). Application of vegetation indices for agricultural crop yield prediction using neural network techniques. Remote Sens., 2, 673–696.


Szász, G. (2005). Termésingadozást kiváltó éghajlati változékonyság a Kárpát-medencében. “Agro-21” füzetek, (40) 33–69.


Tamás, J., Nagy, A., Fehér, J. (2015). Agricultural biomass monitoring on water sheds based on remotely sensed data. Water Science and Technology, 72(12), 2212–2220.


Tewkesbury, A. P., Comber, A. J., Tate, N. J., Lamb, A., Fisher, P. F. (2015). A critical synthesis of remotely sensed optical image changed detection techniques. Remote Sensing of Environment, 160, 1–14.


Tiecheng, B., Nannan, Z., Benoit, M., Youqi, C. (2019). Jujube yield prediction method combining Landsat 8 Vegetation Index and the phenological length. Computers and Electronics in Agriculture, 162, 1011–1027.


Vicente-Serrano, S. M., Cabello, D., Tomás-Burguera, M., Martín-Hernández, N., Beguería, S., Azorin-Molina, C., Kenawy, A. E. (2015). Droughtvariability and land degradation in semiarid regions: assessment using remote sensing data and drought indices (1982–2011). Remote Sens., 7, 4391–4423.