Effects of Biochar and its Reapplication on Soil pH and Sorption Properties of Silt Loam Haplic Luvisol

PDF

Authors: Martin Juriga and Vladimír Šimanský

Volume/Issue: Volume 22: Issue 2

Published online: 01 Nov 2019

Pages: 65–70

DOI: https://doi.org/10.2478/ahr-2019-0012


Abstract

In this paper we investigate the effects of biochar alone and its reapplication and combination with N-fertilizer (1) on the soil pH, and (2) sorption parameters. The soil samples were taken during growing period in 2018 from plots with different biochar (first application in 2014 – A, reapplication in 2018 – B) at application rates: 0 t.ha−1 (B0 control), 10 t.ha−1 (B10) and 20 t.ha−1 (B20) and different nitrogen fertilization: N0 (no nitrogen) and N40 (40 kg.ha−1). Our results showed that the first application of biochar at the rate of 20 t.ha−1 (B20A) without N-fertilizer significantly increased the values of soil pH in H2O, soil pH in KCl, the sum of base cations (SBC) and cation exchange capacity (CEC) compared to control (B0). Similar effects were observed also after reapplication of biochar (B10B). All investigated parameters in fertilized control treatment (B0N40) were worst and the first application, as well as the reapplication of biochar with N, caused significant increase of soil pH in H2O, soil pH in KCl, SBC, CEC, BS and decrease of hydrolytic acidity.


Keywords: soil acidity, cation exchange capacity, base saturation, biochar, fertilization

PDF

References

AHMAD M. – RAJAPAKSHA A. U. – LIM J. E. – ZHANG M. – BOLAN N. – MOHAN D. – VITHANAGE M. – LEE S. S. – OK Y. S. 2014. Biochar as a sorbent for contaminant management in soil and water: A review. In Chemosphere vol. 99 2014 pp. 19–33. DOI: 10.1016/j.chemosphere.2013.10.071


CASTALDI S. – RIONDINO M. – BARANTI S. – ESPOSITO F. R. – MARZAIOLI R. – RUTIGLIANO F. A. – VACCARI F. R. – MIGIETTA F. 2011. Impact of biochar application to a Mediterranean wheat crop on soil microbial acidity and greenhouse gas fluxes. In Chemosphere vol. 85 2011 pp. 1461–1471. DOI: 101.1016/j.chemosphere.011.08.031


CHINTALA R. – MOLLINDE J. – SCHUMACHER T. E. – PAPIERNIK S. K. – MALO D. D. – KUMAR S. – GULBRSDSON D. W. 2013. Nitrate sorption and desorption in biochars from fast pyrolysis. In Microporous and Mesoporous Materials vol. 179 2013 pp. 250–257. DOI: 10.1016/j.micromeso.2013.05.023


CHINTALA R. – SCHUMMACHER T. E. – KUMAR S. – MALO D. D. – RICE J. A. – BLEAKLEM B. – CHILOM G. – CLAY D. E. – JULSOIN J. L. – PAPIERNIK S. K. – GU Z. R. 2014. Molecular characterization of biochars and their influence on microbiological properties of soil. In Journal of Hazardous Materials vol. 279 2014 pp. 244–256. DOI: 10.1016/j.jhhazmat.2014.06.074


CORNELISSEN G. – NURIDA N. L. – HALE S. E. – MARTINSEN V. – SILVANI L. – MULDER J. 2018. Fading positive effect of biochar on crop yield and soil acidity during five growth seasons in an Indonesian Ultisol. In Science of The Total Environment vol. 634 2018 pp. 561–568. DOI: j.scietotenv.2018.03.380


DAI Z. – ZHANG X. – TANG C. – MUHAMMAD N. – WU J. – BROOKES P. C. – XU J. 2017. Potential role of biochars in decreasing soil acidification. In Science of The Total Environmental vol. 581–582 2017 pp. 601–611. DOI: 10.1016/scietotenv.2016.12.169


ESSINGTON M. E. 2004. Competetive sorption behavior of arsenic sellenium coper and lead by soil and biosolid nano and macro colloid particles. In Open Journal of Soil Science vol. 4 2004 pp. 293–304. DOI: 10.4236/ojss.2014.49031


FIALA K. – KOBZA J. – MATÚŠKOVÁ Ľ. – BREČKOVÁ V. – MAKOVNÍKOVÁ J. – BARANČÍKOVÁ G. – BÚRIK V. – LITAVEC T. – HOUŠKOVÁ B. – CHROMANIČOVÁ A. – VÁRADIOVÁ D. – PECHOVÁ B. 1999. Záväzné metódy rozborov pôd. Čiastkový monitorovací systém – PÔDA. 1. vyd. Bratislava : VUPOP 1999 142 s. ISBN 80-85361-55-8.


FIDEL R. B. – LAIRD D. A. – THOMPSON M. L. – LAWRENKO M. 2017. Characterization and quantification of biochar alkalinity. In Chemosphere vol. 167 2017 pp. 367–373. DOI: 10.1016/j.chemosphere.2016.09.151


GUO J. H. – LIU X. J. – ZHANG Y. – SHEN J. L. – HAN W. X. – CHRISTIE P. – GOULDING K. W. T. – VITOSEK P. M. 2010. Singificant acidification in major Chinese croplands. In College of Ressources and Evironmental Science vol. 19 2010 pp. 1008–1010. DOI: 10.1126/science.1182570


HANSEN V. – STÓVER D. M. – MUKHOLM L. J. – PELTRE C. – HAGGAARD-NIELSEN H. – JENSEN L. S. 2016. The effect of straw and wood gasification biochar on carbon sequestration selected soil fertility indicators and functional groups in soil: An incubation study. In Geoderma vol. 269 2016 pp. 99–107. DOI: j.geoderma.2016.01.033


HORÁK J. – KONDRLOVÁ E. – IGAZ D. – ŠIMANSKÝ V. – FELBER R. – LUKAC M. – BALASHOV E. V. – BUCHKINA N. P. – RIZHIYA E. Y. – JANKOWSKI M. 2017. Biochar and biocharwith N fertilizeraffectsoil N2O emission in HaplicLuvisol. In Biologia vol. 72 2017 pp. 995–1001. DOI: 10.1515/biolog-2017-0109


JURIGA M. – ŠIMANSKÝ V. – HORÁK J. – KONDRLOVÁ E. – IGAZ D. – POLLÁKOVÁ N. – BUCHKINA N. P. – BALASHOV E. 2018. The effect of different rates of biochar and biochar in combination with N fertilizer on the parameters of soil organic matter and soil structure. In Journal of Ecological Engineering vol. 19 2018 pp. 153–161. DOI: 10.129/22998993/92894


JURIGA M. – ŠIMANSKÝ V. 2018. Effect of biochar on soil structure-review. In Acta fytotechnica et zootechnica vol. 19 2018 pp. 11–19. DOI: 10.15414/afz.2018.21.01.11-19


KEILUWEIT M. – NICO P. S. – KLEBER M. 2010. Dynamic molecular structure of plant biomaso-derived black carbon (biochar). In Environmental Science and Technol. vol. 44 2010 pp. 1247–1253. DOI: 10.1021/es9031419


KOCHIAN L. V. – PIŇEREROS M. A. – LIU J. – MAGALHAES I. V. 2015. Plant adaptation to acid soils: The molecular basis of crop aluminium resistance. In Annual Review of Plant Biology vol. 66 2015 pp. 571–598. DOI: 10.1146/annurev-arplant-043014


LEHMANN J. – RILLING M. C. – THIES J. – MASIELLO C. A. – HOCKADAY W. C. – CROWLEY D. 2011. Biochar affect on soil biota – A review. In Soil Biology and Biochemistry vol. 43 2011 pp. 1812–1836. DOI: 10.1016/j.soilbio.2011.04.022


LIANG B. – LEHMANN J. – SOLOMON D. – KINYANG J. – GROSSMAN J. – O’NEILL B. – SKIEMSTAD J. O. – LUZAO T. J. – PETERSEN J. – NEVES E. G. 2006. Black carbon increases cation exchange capacity in soil. In Soil Sciency Society of American Journal vol. 70 2006 pp. 35–44.


LORENZ K. – LAL R. 2014. Biochar application to soil for climate change mitigation by soil organic carbon sequestration. In Journal of Plant Nutrition and Soil Science vol. 177 2014 pp. 651–670. DOI: 10.1002/jpnl.201400058


MARTIN S. M. – KOOKANA R. S. – ZWEITEN L. V. – KRULL E. 2012. Marked changes in herbicide sorption desorption upon ageing of biochars in soils. In Journal of Hazardous Materials vol. 231–232 2012 pp. 70–78. DOI: 10.1016/j.jhazmat.2012.06.040


MASUD M. M. – LI J. Y. – XU R. K. 2014. Use of alkaline slag and crop residue biochars to promote base saturation and reduce acidity of an acidic Ultisoil. In Pedosphere vol. 21 2014 pp. 791–798. DOI: 10.1016/S1002-0160(14)60066-7


NOVAK J. M. – LIMA I. – XING B. – GSKIN J. W. – STEINER CH. – DAS K. C. – AHMEDNA M. – REHRAH D. – WATTS D. W. – BUSSCHER W. J. – SCHOMBERG H. 2009. Characterization of designer biochar produced at different temperatures and their effect on a Loamy sand. In Annals of Environmental Science vol. 3 2009 pp. 195–206. ISSN 1939-2621.


OBIA A. – CORNELISSEN G. – MOLDE J. – DÖRSH P. 2015. Effect of soil pH increase by biochar on NO H2O and N2 production during denitrification in acid soils. In Research Article vol. 10 2015. DOI: 10.1371/journal.pone.01387


REN X. YUAN X. – SUN W. 2018. Dynamic changes in atrazine and phenauthrene sorption behaviors during the aging of biochar in soils. In Environmental Science and Pollution Research vol. 25 2018 pp. 81–90. DOI: 10.1007/s11356


RENGEL Z. 2002. Handbook of planth growth pH as the master variable. New York : Marcel Dekter 2002 446 p. ISBN 9780824707613


ŠIMANSKÝ V. – HORÁK J. – IGAZ D. – BALASHOV E. – JONCZAK J. 2018. Biochar and biochar with N fertilizer as a potential tool for improving soil sorption of nutrients. In Journal of Soils and Sediments vol. 18 2018 pp. 1432–1440. DOI: 10.1007/s11368-017-1886-y


ŠIMANSKÝ V. – HORÁK J. – IGAZ D. – JONCZAK J. – MARKIEWICZ M. – FELBER R. – RIZHIYA E. Y. – LUKAC M. 2016. How dose of biochar and biochar with nitrogen can improve the parameters of soil organic matter and soil structure? In Biologia vol. 71 2016 no. 9 pp. 989–995. DOI: 10.1515/biolog-2016-0122


ŠIMANSKÝ V. – IGAZ D. – HORÁK J. – ŠURDA P. – KOLENČÍK M. – BUCHKINA N. P. – UZAROWICZ Ł. – JURIGA M. – ŠRANK D. – PAUKOVÁ Ž. 2018a. Response of soil organic carbon and water-stable aggregates to different biochar treatments including nitrogen fertilizer. In Journal Hydrology and Hydromechanics vol. 66 2018 pp. 429–436. DOI: 10.2478/john-2018-0033


TEUTSCHEROVA N. – VAZGUEZ E. – SANTANA D. – NAVAS M. – MASAGUER M. B. 2017. In fluence of pruning waste compost maturity and biochars on carbon dynamics in acid soil: Incubation study. In European Journal of Soil Biology vol. 78 2017 pp. 66–74. DOI: 10.1016/j.ejsobi.2016.12.001


THOMPSON R. C. – BAKIR A. – STEVEN J. – RICHARD C. 2012. Competetive ofpersistant organic pollutants into microplastic in the marine environment. In Marine Pollution Bulletin vol. 64 2012 pp. 2782–2789. DOI: 10.1016/j.marpollbul.2012.09.010


WANG B. – LI C. – LIANG H. 2013. Bioleaching of heavy metal from woody biochar aging Acidithio bacillusferrooxidans and activation for adsorption. In Bioresource Technology vol. 146 2013 pp. 803–806. DOI: 10.1016/j.biotech.2013.08.020


YANG X. – YING G. G. – KOOKANA R. S. 2009. Reduced plant uptake of pesticides with biochar additions to soil. In Chemosphere vol. 76 2009 pp. 665–667. DOI: 10.1016/j.chemosphere.2009.04.001


YU L. – LU X. – YU M. – XU J. 2017. Combined application of biochar and nitrogen fertilizer benefits nitrogen retention in the rhizosphere of soybean by increasing microbial biomass but not altering microbial community structure. In Science of the Total Environment vol. 187 2017 pp. 640–641. DOI: 10.1016/j.scitoenv.2018.06.018


YUAN J. H. – XU R. K. – ZHANG H. 2011. The forms of alkalis in the biochars produced from crop residues at different temperatures. In Bioresource Technology vol. 102 2011 pp. 3488–3497. DOI: j.biotech.2010.11.018


ZHANG S. – ZHANG B. – LI X. 2002. Evolution of soil fertility and fertilizer benefits under different soil types and cropping systems. In Plant Nutrition Fertilization Science vol. 8 2002 pp. 9–15.


ZHANG Y. – YANG S. – FU M. M. – CAI J. P. – ZHANG Y. Y. – WANG R. Z. – XU Z. W. – BAI Y. T. – JIANG Y. 2015. Sheep manure application increases soil exchangeable base cations in a semi-arid steppe of Inner Mongolia. In Journal of Arid Land vol. 7 2015 pp. 361–369. DOI: 10.1007/s40333015-0004-5


ZONG Y. – WANG Y. – SHENG Y. – WU C. – LU S. 2018. Ameliorating soil acidity and physical properties of two contrasting texture Ultisols with wastewater sludge biochar. In Environmental Science and Pollutant Research vol. 25 2018 pp. 25726–25733. DOI: 10.1007/s11356-017-9509-0